
http://www.myitforum.com
MOF Editing Guide

Written by: Michael S. Schultz

Date: 02/14/2002

Version: 2.5

Introduction

Modifying your MOF is a lot like riding a bike. Just when you think you're really good, you do something really stupid and hurt yourself. However, you should be able to avoid any serious issues with the help of this guide.

I'd like to offer a special thank you to Paul Thomsen from Microsoft, who lifted the "fog of war" from some of the areas in question. It's that extra effort that keeps customers from feeling alienated from the developers; Excellent job.

Hope this helps!

Michael S. Schultz

schultzms@groton.pfizer.com
ewasteland@hotmail.com
Contents

Chapter 1
–
The Basics

 4
Chapter 2
–
General MOF Syntax

10
Chapter 3
–
MOF Modification Methods

15
Chapter 4
–
How To Safely Test Your MOF

30
Chapter 5
–
Pulling the Trigger

33
Chapter 6
–
How to Clean Up

34
Chapter 6.5
–
Enterprise Cleanup

38
Chapter 7
–
Troubleshooting

40
Appendix A
–
General Information

42
Appendix B
–
Arbitrary Win32 Reporting Class

43
Appendix C
–
MONSTER MOF

45
Appendix D
–
MOF Hotfix Script

64
Appendix E
–
MOF Add/Remove Programs

65
Appendix F
–
McAfee DAT Files

66
Chapter 1 - The Basics
Normally I would start a guide such as this with the proper definitions of WBEM, WMI, CIM, and all the other acronyms that are associated with MOF forms. However a chapter such as that would be nothing more than a feeble rewrite of what is covered in excruciating detail in a hundred other locations.

If you're looking for information about WBEM in that format, here are three good sources:

http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/itcommunity/chats/trans/win2ksrv/w2wmi16.asp
http://www-106.ibm.com/developerworks/java/library/j-wbem/
http://www.win2000mag.com/Articles/Index.cfm?ArticleID=5043
Before getting started, I'd like to mention that everything in this document pertains to WMI 1.5 or later. (Often represented by its sub-version 1085.005, representing 1.50.1085.005) While much of this can be done with an older version, it is recommended to upgrade your workstations to WMI 1.5. Windows 2000 comes standard with WMI 1.5, but 9x and NT clients will need upgraded.

Download WMI 1.5 here:

http://msdn.microsoft.com/code/sample.asp?url=/msdn-files/027/001/576/msdncompositedoc.xml
Also be aware that some 9x clients may have issues being upgraded to WMI 1.5 if their DCOM has not been upgraded to version 1.3 first.

Download DCOM 1.3 for Win95 here:

http://www.microsoft.com/com/dcom/dcom95/dcom1_3.asp
Download DCOM 1.3 for Win98 here:

http://www.microsoft.com/com/dcom/dcom98/dcom1_3.asp
WMI

You can look at WMI like a chalkboard. The teacher, Mrs. Microsoft, has placed a lot of good information out on the board for everyone to see and use. We as students can put information on the chalkboard as well, and quite often we look at what Mrs. Microsoft put on the board for reference. The SMS_DEF.MOF file is the chalk that we use to write on the board. (Other items can be used other than chalk, like magic markers (VB scripts), but I prefer chalk)
Once this information is on the chalkboard, it doesn’t just disappear. It will stay on that chalkboard until it is removed. If you try to erase something you wrote, and don’t do a good job of it, there will still be remnants of it on the board.

Every so often, Mr. Inventory, who patrols the school like he owns the place, stops in and writes down information from the board. Now this is a huge board, and not everything is relevant, so instead of having to go over the entire chalkboard, Mr. Inventory only checks one part of the board. This is where the students and teacher put notes about what they want Principle SMS to see. Based upon these notes, Mr. Inventory writes down the appropriate information from the rest of the board. He will then take this information to the Principle, who stores this data.
Huh?

In slightly more technical terms, Microsoft has provided us with WMI, and has placed a lot of good information in there that can be used. We can build new classes, or we can play with some of the information they have provided. There are many ways to add information to the WMI, but the SMS_DEF.MOF is a preferred method.
This information, once added to WMI, remains there until it is removed. If it is removed correctly, no trace is found, but if it’s not, a mess could be left.

Every so often a Hardware inventory is run on the client machine. This Inventory checks one namespace in WMI for what information it’s to collect. The namespace contains just “reporting classes”. These classes don’t contain the information themselves, they just point to the data classes in another namespace in WMI that the inventory is to collect.

The inventory then collects the information based upon the reporting classes and sends this information to SMS.

Got it?
For our purposes as SMS administrators, the WMI repository is what we use to obtain hardware information from our company assets. When the SMS client is first installed on a workstation, the classes defined in the SMS_DEF.MOF are added to WMI.

When a hardware inventory is done, WMI is queried, the information is retrieved from the hardware, and the information is forwarded to the SMS database. The database will then create a new table for any new classes, based upon the format that was depicted in the SMS_DEF.MOF.

For example, if you have a Class created with an SMS_GROUP_NAME of "Mikes Registry Information" with 3 string fields, you'll have an SMS table created called "Mikes_Registry_Inform_DATA" (21 chars of your group name will be used, including spaces converted to underscores) with 3 string fields. The data from the client will be a record in this table, and each client afterward with this same class will store its information here.

NOTE: It only takes one machine with one new class in its repository to add 2 new tables to your SMS database. (Data and Hist) Be wary when you experiment!

NOTE: If you happen to modify a class in your MOF and change the SMS_GROUP_NAME, a new table will be created for that class, however the old table will still exist! Refer to Chapter 6 to clean up old tables and classes.

There are hundreds of classes and thousands of fields that could be added to the WMI repository and reported to SMS. Luckily the powers in Redmond decided it wouldn't be a good idea to store and collect all this information by default. As an administrator, you're able to pick what classes to add to the repository. You're able to decide of all the classes in the repository, which classes you want SMS to collect, and which you do not. To do either, you use a MOF.

The SMS_DEF.MOF can:

1. Modify which classes and which fields report to SMS.

2. Add new data classes to the WMI repository.

1. Modify which classes and which fields report to SMS.

Just like going to a yard sale, you COULD pick up everything there for $17.25 and fill your basement with junk, or you can pick and choose which items you actually will use. Using the SMS_DEF.MOF, you can pick and choose which classes to collect information on, as well as particular fields in each class.

This is done in the SMS_DEF.MOF by creating what is called a Reporting Class. A Reporting Class is block of code added to the root\cimv2\sms namespace that informs the SMS hardware inventory whether a class is to be inventoried, and which fields in that class should be inventoried. An example of a Reporting Class is shown below:

[SMS_Report(True),

SMS_Group_Name("System Enclosure"),

SMS_Class_ID("MICROSOFT|System_Enclosure|1.0")]

class Win32_SystemEnclosure : SMS_Class_Template

{

[SMS_Report(True), key]

string Tag;

[SMS_Report(True)]

string Caption;

[SMS_Report(True)]

string Description;

[SMS_Report(True)]

string Manufacturer;

[SMS_Report(True)]

string Name;

[SMS_Report(True)]

string SerialNumber;

[SMS_Report(True)]

string SMBIOSAssetTag;

[SMS_Report(True)]

string Version;

[SMS_Report(True)]

uint16

ChassisTypes;

};

In the example above the first line "[SMS_Report(TRUE)," is telling the WMI repository that this class, Win32_SystemEnclosure, should be made inventoried. The selection process can be more granular as you can pick and choose which fields you want to report simply by changing TRUE to FALSE and FALSE to TRUE.

What happens if information you want ISN'T currently defined in the repository? Read on.

NOTE: Often administrators use mofman.exe to turn this reporting on and off. I avoid mofman.exe because of how easy it is to make the changes manually, and because early versions of the tool actually BROKE your SMS_DEF.MOF. However I'm sure it's safer to use now and the GUI interface is good for beginners.

2. Add new classes to the WMI repository.

As mentioned before, there is a plethora of data that can be defined in the WMI but isn't. You may also want to collect asset information that is proprietary to your environment. To collect this information, you need to tell the WMI where this information is.

Example: Lets say at Schultz, Inc, I'm a freak about fans, so I want to know how fast the fans are spinning on my workstations. Since this is not typical information administrators are interested in, it's not included by default in the SMS_DEF.MOF, however it IS included as a standard Win_32 class.

Because this is a standard WMI class, the only thing I have to do is create a Reporting Class in the MOF that says TRUE, I want to see the Win32_Fan class, and TRUE, I want to see the DesiredSpeed field in that class. (The exact syntax of this type of addition is explained later).

In the chalkboard example given earlier in this chapter, Win32_Fan was already written on the board by the teacher. We just have to write a note on the chalkboard for Mr. Inventory to gather that information.
If added correctly, I will now have the fan speed for all of my workstations reported to SMS, and in my Resource Explorer. WOOHOO!

NOTE: In the above example, Win32_Fan is an existing class in systems with WMI 1.5 installed. Also, this class may not be populated with data if the hardware manufacturers have not provided the information in the proper format and locations. The example is used more for it's simplicity.

Often, however, the information that I am looking to retrieve from a workstation is not found in an existing Win_32 class. Perhaps I would like to retrieve information from the registry.

Example: At Schultz, Inc., we put the User ID of the owner of each machine somewhere in the registry. Because gathering registry keys is not standard, and there is obviously no existing class for every registry key or combination of keys, I have to add three items to the MOF.

What needs to be defined in the MOF:

1. The Provider - What tool to use to get the registry key?
2. The Data Class - Where is this registry key?
3. The Reporting Class - What does SMS want to see?

Step 1: What tool to use to get the registry key?

The "tools" used are called providers. In his Hardware Inventory Training class, Scott Stephen
 had an excellent analogy about the Provider being a butler that shops at WMI-Mart. The shopping list used by the butler is the SMS_DEF.MOF file. (Although I’ve never attended training with Mr. Stephen, I did get the general concept of this analogy, so it may be a slightly different explanation than he has used)
Continuing with this analogy, there are actually 3 different butlers, but only 2 are commonly used. One butler (or provider) is able to get just about anything you want from WMI-Mart, as long as you tell him exactly what it is you want, and exactly where he can get it. This is the Property Provider.

"Get me the DVD movie 'Hannibal' from the Electronics area, isle 7, shelf 1, column 9. Also get me a Hanes T-Shirt, white, large, with style A, from Mens Clothing, isle 4, shelf 3, column 6, and finally a bag of WEGE pretzels, broken, 18 oz, from the Food area, isle 2, shelf 4, column 2."

The second butler (or provider) is less picky, but is also limited in ways. This butler doesn't need to know exactly what you want, but it is only able to shop in one area for one type of item. This is the Instance Provider.

"Go to the Electronics area and get me the name, price, producer, and director for every movie in isle 7."

Obviously, each butler (or provider) will be useful in different situations, depending upon your needs. Because it's not typical to "shop" for registry keys in a standard SMS_DEF.MOF, the provider is not in the file by default. To add the proper provider to a MOF consists of a copy/paste of about 15 lines of code.

For this example, I'll be using the registry property provider. I know the exact key that I want, and I know where it is located. To put the registry property provider into my SMS_DEF.MOF, I'd add the following lines:

#pragma namespace("\\\\.\\root\\CIMV2")

instance of __Win32Provider as $PropProv

{

Name = "RegPropProv";

Clsid = "{72967901-68EC-11d0-B729-00AA0062CBB7}";

};

instance of __PropertyProviderRegistration

{

Provider = $PropProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

};

NOTE: The following are the lines that would be copied and pasted if you used the Instance Provider. Remember, they are 2 separate entities.

instance of __Win32Provider as $InstProv

{

Name = "RegProv" ;

ClsId = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider = $InstProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

SupportsDelete = TRUE;

SupportsEnumeration = TRUE;

};

Step 2: Where is this registry key?

The key I'm looking for is located in HKEY_Local_Machine\Software\Schultz and the Value name is UserID. To declare this information in the SMS_DEF.MOF, I create a Data Class in the root\cimv2 namespace.
#pragma namespace("\\\\.\\root\\cimv2")

[DYNPROPS]

class SchultzID

{

[key] string
KeyName="";

string

UserID;

};

[DYNPROPS]

instance of SchultzID

{

KeyName="The Schultz User ID";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Schultz|UserID"),

Dynamic, Provider("RegPropProv")] UserID;

};

Notice that two items were declared. First, a Data Class was created called SchultzID. Second, an Instance of that class was created that tells the WMI exactly where the key and value are located, and where to put the information.

Step 3: What does SMS want to see?

The class has been defined, so now I just need to make sure this data is collected by SMS. To do this, you create a Reporting Class that allows SMS to collect the "SchultzID" Data Class. Notice that the Reporting Class is defined in the root\cimv2\sms namespace:

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("My Schultz ID"),

SMS_Class_ID("SchultzID")]

class SchultzID : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

string

SchultzID;

};

Put those three sections together, and when the MOF is compiled, the WMI angels fly down from the heavens, and automagically the class in place! The next time a hardware inventory is run, SMS will now house this data!

Summary

This chapter was just to introduce some of the concepts of MOF editing. Don't get flustered if you don't understand everything about MOF editing. The specifics of MOF editing are described in more detail below.

Chapter 2 - General MOF Syntax

This chapter is to provide you with some general information about how the SMS_DEF.MOF file is structured. To view the MOF, copy the SMS_DEF.MOF from %windir%\ms\sms\clicomp\hinv\ on an SMS client into another directory so you can play with it.

Open the file with Notepad.exe or another strict text editor. This will ensure you don't include any funky characters that could possibly be added by certain editors.

The first step to edit the MOF file is to sit on the floor and meditate on one thought: COMMENT YOUR MOF. The MOF file is a large and often overwhelming file. If you do not comment changes that you make, you will regret it later.

To comment, simply use "//" prior to the text you plan to write. Use comments at any place you feel necessary to remember what you did, when, and why. For example:

//=================================

//START of MOF additions - SCHULTZMS

//

//10/04/2001 - Gawd I hope this works!

//10/08/2001 - Added System Enclosure Class

//=================================

<blahblahblah>

//=================================

//Start of new class entry (10/08/2001)

//=================================

<blahblahblah>

Additionally, if you want to comment a large block of code, instead of using "//" on each line, you can use "/*" before and "*/" after the block of code. The entire area between these characters will be interpreted as comment lines. For example:

/*

code that does something

more code

code here that doesn't work

*/

The second step is to understand how MOF files work. Much like a batch file, the MOF compiler will work its way from the top to the bottom. Each item that is correctly formatted will be added to the WMI until the compiler reaches the end of the file, or a class that has an error. You can check the MOFCOMP log files to see if your MOF compiled correctly, but typically the compiler will display an error if it fails and all classes below the errant class will not be added to WMI.

When a MOF is compiled during a Hardware Inventory, it will attempt to compile the new MOF. If the MOF has errors, it will fail out and attempt to use the old MOF. Record of this will be in the HINV32.log file.

NOTE: Some people like to put their MOF additions into a separate file called client.mof, or anything similar, and they place that into the HINV directory on the client. This will be compiled when the hardware inventory runs and will function as if it's part of the SMS_DEF.MOF, but in a separate file. However, I suggest just getting comfortable with the SMS_DEF.MOF file and modify it directly.
At first glance, the MOF is a nasty mix of characters, class ID's, and other things to make your head spin. What I'd like to do first is to try and get rid of some of the mystery behind how the MOF is laid out.

Definitions

Before getting too far into this, let's go over a few definitions in plain English:

Namespace - A namespace is like a file directory. Data and Reporting Classes are defined in a namespace just like files in a directory. This namespace (or directory) can also have other namespaces (sub-directories) underneath it.

You may recognize the following line from your SMS_DEF.MOF file:

#pragma namespace ("\\\\.\\root\\cimv2")
This line can be interpreted as, "From this point forward, place all classes into the root\cimv2 namespace until told otherwise." Prior to defining Providers, Data Classes, and Instances, this line is necessary to tell the compiler to put this information in the proper location (namespace).

Another line often seen is:

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")
This line simply changes the namespace to be used to root\cimv2\sms. Often in a heavily modified SMS_DEF.MOF you will see the default namespace switched back and forth between the two namespaces.

NOTE: As a rule for the SMS_DEF.MOF file, place all Reporting Classes into the root\cimv2\sms namespace. This is that special “Notes” area on the chalkboard for Mr. Inventory to look at for what to report. All other classes are placed into the root\cimv2 namespace, or the rest of the chalkboard.
Remember, you only need to use the “#pragma namespace” line when you want to change the namespace to be used. If you have a boatload of information that needs to go into the same namespace, you don’t need to put this line in front of every class you define…just place it once before your modifications.
Provider - In addition to the example provided in Chapter 1, one can look at a provider as a browser search engine like www.google.com. You don't know HOW the search engine works, but you know if you type in the right criteria using that engine, you get the information you want.

Providers are described in more detail later in this and other chapters.

NOTE: The namespace is changed to root\cimv2 prior to registering Providers.
Data Class - Using the search engine analogy, a Data Class is the criteria. What are you looking for? How is it formatted? When defining a class, you also need to state which provider is being used to get the information.

Data Classes defined in the root\cimv2 namespace, or “the rest of the chalkboard.”
Reporting Class - The reporting class lets you pick and choose what classes and fields in WMI you want to see on your SMS site. Using the same analogy above, the reporting class is a filter.

The default SMS_DEF.MOF file registers a few providers, and then defines about 70 Reporting Classes. As I mentioned before, there are hundreds of other classes and thousands of fields that could be added to the SMS_DEF.MOF file. However, you probably don't want all of those classes reporting to SMS, and often, you may not even want all of the fields in the classes that you do want reporting to SMS.

The Reporting Class enables you to define what information you want to see on your SMS site, and allows you to filter out data that is of no use to you. For example, if you're bitten by a spider and want to know if it's poisonous, you can find a plethora of information about that spider. However, you don't care what its Latin name is, whether it's indigenous to Central Pennsylvania, or how it's relevant to the Mezzo-American jumping bean population.

What you want to see is:

Spider Name: Brown Recluse

Looks like: Brown and Fuzzy

Poisonous: If you're able to read this page, you weren't bitten by one of these.

The Reporting Class allows you to filter out the junk and just provide you with the "good stuff."

NOTE: The namespace is changed to root\cimv2\SMS prior to the reporting class definition.
Instance - WMI was created with many Object Oriented principles. One of these principles is the process of defining a class in generic terms, and then creating an "instance" of that class. Defining a class is like creating a mold. When you use that mold to create objects, you're creating instances. To instantiate is the process of doing the above.

Okay, so the definitions aren't from Webster's, but hopefully they'll help when reading further.

The PseudoMOF

If one were asked to "Instantiate three providers in the MOF", most people would just raise their eyebrows and snicker. However if I told you all you have to do is copy and paste 45 lines of code, would that make the job easier?

Let's break the MOF down into a "PseudoMOF" where instead of looking at 500 lines of gibberish, you're able to see its natural layout.

The SMS_DEF.MOF file initially installed by SMS 2.0 is very simple. It consists of 3 sections:

1. Create a namespace in WMI for SMS under root\cimv2.
· Creating the namespace is 26 lines of goo that you don't have to touch.

2. Register the providers that are needed.
· Registering the providers if 54 lines of goo that you don't have to touch.

3. Create reporting classes. What information does SMS want? (The meat of the file)

· Scroll through the rest of the file and all you'll see is the MOF stating which standard Win32 classes SMS wants to see.

That's it!

See information you want that is not reporting? Change "FALSE" to "TRUE", save the file and skip to Chapter 6. That field will now be inventoried by SMS, as long as the primary class is also set to be inventoried. (I.e. the top line in that class is set to TRUE)

Sound easy? It is!

So when does it get complicated?

It's only complicated when you're interested in information that's not already in the MOF file or in WMI. It's easy to change FALSE to TRUE, but it's a lot harder to add a new class.

As stated before, when the MOF is compiled it just falls through like a batch file. Because of this, most people leave the script written by Microsoft alone, create a big, bold, (commented out) line at the end of the file and say "THIS IS MY STUFF!"

What the heck…paste this at the very end of the MOF file:

//=============================

// THIS IS MY STUFF

// Written by: <insert name, if you dare>

// Date:

//=============================

Above this block of script, you don't need to do anything but change FALSE to TRUE and TRUE to FALSE.

NOTE: Some administrators like to have all providers, classes, and reporting classes defined in their own location (requiring that any new providers they add be appended to the provider section at the top of the MOF file, class definitions immediately after that, and the reporting classes at the end. Because of this they may edit/add/delete sections all over the MOF. However, I prefer keeping my modifications in one place at the end of the script. Neither is right. Neither is wrong.
Basic MOF Sequence

When adding new information to a MOF, there is a sequence that must be followed:

1. Register the Provider

2. Define the Data Class that will use that provider, or a Reporting Class.

The basic premise for this is pretty easy to understand:

Before using a Provider, it must be registered. However, it does not matter if the Reporting Class is defined first or the Data Class. The SMS_DEF.MOF file simply modifies information in the WMI, and the WMI is what the hardware inventory queries for information. As long as the names of the Reporting Class and Data Class are the same, the information should be successfully extracted.

Slightly more complex

Following the sequence above, a valid MOF would contain the following:

#pragma namespace("\\\\.\\Root\\cimv2")

<providers are registered>

<data class "TravelMode" is defined>

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

<reporting class for "TravelMode" is defined>

In English, this says, "Inside the root\cimv2 namespace, register a provider, and define a class called "TravelMode". Switch to the root\cimv2\sms namespace and define a reporting class for the "TravelMode" class."

As you can see, providers are registered and data classes are defined in root\cimv2, and reporting classes are defined in root\cimv2\SMS. To tell the compiler where they classes should be defined, you use the "#pragma" line as described in the definitions section earlier in the chapter.

Most times when I add information to a MOF, I like to keep all relevant information together in a "code block". An example of a code block would be similar to the example above. All relevant information pertaining to TravelMode is located in one area of the MOF. If I no longer wanted this class defined in my MOF, I could simply comment out this block of code, or even delete it.

NOTE: There are many namespaces other than root\cimv2 and root\cimv2\sms. However, root\cimv2 is the only namespace viewed by the SMS Hardware inventory. To access other namespaces, we must use the View Instance Provider to "mirror" this information into the root\cimv2 namespace so it can be used. Using this will allow you to pull data from namespaces such as root\cimv2\dell to pull Dell WMI information using the dellwmi.dll. This process is described in detail in Chapter 3.

Paul Thomsen, a technical writer from Microsoft for SMS, provided the following layout as a good template to follow:

The SMS_DEF.MOF file layout, in order:

Chapter 3 - MOF Modification Methods

One of the most common questions I get about the first version of the guide was, "why do your examples look different than some of the ones I downloaded?" The answer to this is simple. There are at least six different ways to add information to your MOF. Perhaps even more! While I may have used one method to retrieve information, another admin may have used a different method, achieving the same results.

This guide will discuss five of the six methods:

1. Reporting on an existing class

2. Pulling registry keys using the Registry Property Provider

3. Pulling registry keys using the Registry Instance Provider

4. Adding information with Static class definitions.

5. Pulling data using the View Provider

The sixth method uses the Registry Event Provider which can possibly be used to trigger events or methods when registry settings are changed, however I haven't been able to dig deeper into this yet. Any information on its usefulness is greatly appreciated.

Each method is best suited to obtain certain pieces of information. Although two methods MAY be able to get the same information, it's better to use the proper method for the job. A brick may drive a nail, but why not use a hammer?

Some information cannot be retrieved using the existing providers. For example, registry trees with unpredictable key names, like networking protocol details. This is also the case when the keys have values that the registry providers simply cannot collect, such as the HAL. In these scenarios, you must write a script that collects the data and write it to a static MOF (Method 4) or directly into a WMI class.

Method 1: Reporting on an existing class

The easiest addition to any MOF file is to find the existing Win32 class that you want to add and append it to the end of the MOF file. There are HUNDREDS of Win32 classes that are not included in the standard SMS_DEF.MOF file.

A list of all Win32 hardware classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_32hard1_9v77.asp
A list of all Win32 classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_32hard1_3d4j.asp
A list of all WMI classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_wmicls_00j7.asp
One of the most common classes to add is System Enclosure. This potentially gives you information on the Serial Number, SMBIOS Asset Tag, Manufacturer, and a few other interesting items.

Because System Enclosure is an existing Win32 class, the data class is already defined to WMI. All you need to do is create a Reporting Class in the root\cimv2\sms namespace to tell SMS to gather that data in its Hardware Inventory.

If you've never modified your MOF before, paste the following example at the very end of the document:

[SMS_Report(TRUE),

SMS_Group_Name("System Enclosure"),

SMS_Class_ID("MICROSOFT|System_Enclosure|1.0")]

class Win32_SystemEnclosure : SMS_Class_Template

{

[SMS_Report(TRUE), key]

string

Tag;

[SMS_Report(TRUE)]

string

Caption;

[SMS_Report(TRUE)]

string Description;

[SMS_Report(TRUE)]

string Manufacturer;

[SMS_Report(TRUE)]

string Name;

[SMS_Report(TRUE)]

string
SerialNumber;

[SMS_Report(TRUE)]

string SMBIOSAssetTag;

[SMS_Report(TRUE)]

string

Version;

};
NOTE: If you have modified your SMS_DEF.MOF file prior to this, the only requirement to make this "code block" work is for the line #pragma namespace ("\\\\.\\root\\cimv2\\SMS") to appear before the above example. Remember, this is a reporting class, and therefore must be placed into the root\cimv2\sms namespace.

Copy, paste, save, and you're all set with a new reporting class in your MOF.

Unfortunately, not all fields that you find in the Win32 classes are useful. In fact, there may be very little useful data that these classes can provide. Typically it depends on the hardware vendor.

To make sure you're not wasting your time with a class, you can use the WBEMdump.exe tool from the WMI SDK to view what information is available for a class on a particular workstation. Based upon what fields actually contain valid data, you can then determine which fields to turn on and off when defining your reporting class.

For example:

(From MS Technet)

wbemdump root\cimv2 win32_bios
After you type the command, output similar to the following example is displayed:

<ROOT\CIMV2>

Win32_BIOS

BiosCharacteristics (CIM_UINT16 | CIM_FLAG_ARRAY/uint16) = 4,7,9,10,11,12,14,15,19,22,23,24,26,27,28,29,30,32,33,34,36

BuildNumber (CIM_STRING/string) = <null>

Caption (CIM_STRING/string) = "Compaq"

CodeSet (CIM_STRING/string) = <null>

CurrentLanguage (CIM_STRING/string) = <null>

Description (CIM_STRING/string) = "Compaq"

IdentificationCode (CIM_STRING/string) = <null>

InstallableLanguages (CIM_UINT16/uint16) = <null>

InstallDate (CIM_DATETIME/datetime) = <null>

LanguageEdition (CIM_STRING/string) = <null>

ListOfLanguages (CIM_STRING | CIM_FLAG_ARRAY/string) = <null>

Manufacturer (CIM_STRING/string) = "Compaq"

Name (CIM_STRING/string)* = "Compaq"

OtherTargetOS (CIM_STRING/string) = <null>

PrimaryBIOS (CIM_BOOLEAN/boolean) = TRUE

ReleaseDate (CIM_DATETIME/datetime) = "19990406******.******+***"

SerialNumber (CIM_STRING/string) = "1X97CLY2X22F"

SMBIOSBIOSVersion (CIM_STRING/string) = "686U2"

SMBIOSMajorVersion (CIM_UINT16/uint16) = 2 (0x2)

SMBIOSMinorVersion (CIM_UINT16/uint16) = 1 (0x1)

SMBIOSPresent (CIM_BOOLEAN/boolean) = TRUE

SoftwareElementID (CIM_STRING/string)* = "Compaq"

SoftwareElementState (CIM_UINT16/uint16)* = 3 (0x3)

Status (CIM_STRING/string) = "OK"

TargetOperatingSystem (CIM_UINT16/uint16)* = 0 (0x0)

Version (CIM_STRING/string)* = ""

Note The serial number and other properties are now available because the new version of WMI (1085.005) is installed.

Based upon the information you see that is of value to you, create a reporting class with those particular fields set to TRUE.

NOTE: Dudeworks.net, a friend of myitforum.com, has developed an excellent tool called the SMS_DEF.MOF Class Reporting Exporter. This tool allows you to browse current Win32 classes in the WMI and export them into a properly formatted Reporting Class that can be pasted into your MOF file. It is currently in Alpha, but the Dude's tools are "most excellent."

A picture of the tool is available here:

http://www.dudeworks.net/defmof/sms_defmoftool.jpg
Download of the tool is available from his home page:

http://www.dudeworks.net/
(dudeworks.net may become an affiliate of myitforum.com after this document is complete, therefore this URL may be incorrect. Should this occur, dudeworks whould be found on the myitforum.com site)

Example:

Let say, I'm a big fan of cache memory. In fact, I want my SMS site I want to know all about how much cache memory is on all my desktops.

Performing a dump of the win32_cachememory class, I notice that quite a few fields are <null>, but I do get information on my level 3 and level 4 cache. With that information in hand, I copy and paste an existing reporting class, edit a few characters, and then add each of the fields from the Win32_CacheMemory class. However, all I'm concerned about are the Name, Level, and Purpose, so I set everything to FALSE except for those fields, and the first SMS_Report above the SMS_GROUP_NAME.

To create the script needed for the MOF for the Cache Memory class, you can manually type in the information, use the MOF Generator found in the CIM studio, or use the tool from the Dude.

Download the WMISDK containing the CIM studio:

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/MSDN-FILES/027/001/552/msdncompositedoc.xml
See Appendix B for the example.

NOTE: Remember, WMI 1.5 or later needs to be installed on the clients to take full advantage of this method. If the class you're looking for cannot be found using wbemdump, most likely you have an older version. If the class can be found, but no data, most likely the hardware manufacturer has not provided the information in the necessary format for the class to retrieve.

NOTE: When viewing the class information on the web, at the bottom of the page it may note that there are prerequisite MOFs that must be compiled on the clients to obtain the information successfully. With WMI 1.5, this should not be necessary for most classes, but is still a potential issue.

Methods 2 and 3: Registry Property Provider and Registry Instance Provider

Have you ever found yourself perusing MOF examples on the web and finding two that pull similar registry information, but look entirely different? It could be because one works and one doesn't…however it's much more likely that they are using two different providers to pull the same information.

The Registry Property Provider and the Registry Instance Provider are commonly confused. While they both can be used to pull most single registry keys, they each have their own unique benefits. In a short summary, the Registry Property Provider excels at grabbing a variety keys from a variety of known locations. The Registry Instance Provider excels at grabbing a variety of unknown keys from a single location.

To better explain the difference between in the providers, view the following registry structure:

[image: image1.png]|2 Revam B =loix

Regsty Edt View Favaries Help

&0 Mybprirto Name Tipe | Daa |
- 3 Vausieio) Dot REG_SZ (valie ot se
&0 Holfies thedala REGSZ Myito
Qo e W
0 783012 o)
I | _>l_‘

[My ComputerHKEY_LOCAL_MACHINE\SOFTWARE HyéppifoW/ahusblinio

Example 1: The powers that be at Schultz, Inc. have created the key HKLM\Software\MyAppInfo\ValuableInfo on every machine in the company. They would like to collect this information and store it in SMS. In this example, both the RPP and RIP providers could be used to pull this key value.

Example 2: The powers that be at Mott, Inc. have a special request. They, too, have the ValueableInfo key on their machines, but they also want to pull their McAfee and IE version keys and store the information in a single class called "Client Information." Whoa…all those keys into ONE class? This is a job for the Registry Property Provider.

The RPP is able to pull a variety of keys and values from multiple locations and store the information in a single class. You would tell the provider to pull HKLM\Software\MyAppInfo\ValueableInfo|thedata, and then tell it to pull HKLM\Software\Network Associates\TVD\Virus Scan|szCurrentVersionNumber, rinse and repeat for all of the other version keys you're interested in pulling.

The RIP could not fulfill this request because it can only obtain information from one registry key per class. Though this may sound cooky, the advantages of the RIP are seen in Example 3.

Example 3: The powers that be at Trent, Inc. have something else in mind! They would like to know about all of the Hotfixes that have been run on their clients. To pull this information the Registry Instance Provider must be used, but why?

[image: image2.png]|2 Revam B =loix

Regsty Edt View Favaries Help

5L Mybpelnio Name Typs | Data |
2 Valusblelrfo f[38) pefaul) REG_SZ (value not sat)
03 Holixes E-’lnarem ¥ REGSZ June 29,1975
/2 0123486
(] 0789012
b

[y Computen\HIEY_LOCAL_VACHINE\SOFTWARE Wotines\ 123455

To use the RPP for Example 3, one would need to tell the provider to pull data from HKLM\Software\Hotfixes\Q123456|Date Installed…then tell the RPP to pull data from HKLM\Software\Hotfixes\Q789012|DateInstalled, rinse and repeat for every imaginable Hotfix, and you can see the dilemma. How do you know which Hotfixes have been installed at your site? Do YOU want to type in all that information? Are you going to edit your MOF each time a new Hotfix is released from Microsoft?

This is where the Registry Instance Provider shines. The Registry Instance Provider doesn't need to know the exact names of the keys it is pulling. It simply needs to know the format of the key structure.

In the example above, I know the parent key is HKLM\Software\Hotfixes. Below that, all of the keys have different names, but each of them has a DateInstalled value name. The RIP needs to be told what the parent key is, the value name, and it will collect this information for each subkey directly underneath it.

This will result in a table in the SMS database that will look similar to this:

MyTableName

MachineID
Hotfix

Date Installed

1111111
Q123456
June 29, 1975

1111111
Q789012
Jan 21, 1973

2222222
Q123456
July 18, 1974

2222222
Q344251
Dec 9, 1984

NOTE: Although the example above only shows one value name, DateInstalled, being pulled for each Hotfix key (Q??????), if there were other value names common among the Hotfix subkeys, they could be pulled as well.

Hopefully you get the picture. Again, the Registry Property Provider excels at grabbing a variety keys from a variety of known locations. The Registry Instance Provider excels at grabbing a variety of unknown keys from a single location.

Example using the Registry Property Provider

The basic steps to use the Registry Property Provider are as follows:

1. Register the Property Provider.

2. Declare the Data Class.

3. Declare the Instance of that Data Class.

4. Declare Reporting Class.

Should you have multiple classes or registry groups you want to collect, the best format I've found is to declare the Data Class, Instance, and the Reporting Class together in one block of code. This will enable you to add or remove that class by simply commenting out that section of the MOF file using /* and */.

For example:

1. Register the property provider.
2. Declare Class1.
3. Declare the instance of Class1.
4. Declare what should be reported for Class1.

5. Declare Class2.
6. Declare the instance of Class2.
7. Declare what should be reported for Class2.

NOTE: Registering a provider simply consists of copying and pasting the same 15 lines of code from one MOF to another. There is no need to rewrite the same block of code. The only line that needs attention is the Name = “RegPropProv”, as this is the how the Class will refer to the provider.
Step 1 -- To register the Registry Property Provider:

#pragma namespace("\\\\.\\root\\CIMV2")

// Register the Property provider to get Registry information

instance of __Win32Provider as $PropProv

{

Name = "RegPropProv";

Clsid = "{72967901-68EC-11d0-B729-00AA0062CBB7}";

};

instance of __PropertyProviderRegistration

{

Provider = $PropProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

};

Step 2 -- To declare the class:

[DYNPROPS]

class <classname>

{

[key] string
KeyName="";

<datatype>
<fieldname1>;

<datatype>
<fieldname2>;

<datatype>
<fieldname3>;

};

Step 3 -- To declare the instance:

[DYNPROPS]

instance of <classname>

{

KeyName="<classname>";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\<whatkeydoyouwant?>|<whatvaluename1?>"),

Dynamic, Provider("RegPropProv")] <putvaluein-fieldname1>;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\<whatkeydoyouwant?>|<whatvaluename2?>"),

Dynamic, Provider("RegPropProv")] <putvaluein-fieldname2>;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\<whatkeydoyouwant?>|<whatvaluename3?>"),

Dynamic, Provider("RegPropProv")] <putvaluein-fieldname3>;

};

Step 4 -- To declare what to report:

#pragma namespace("\\\\.\\root\\CIMV2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("<What you want to call it>"),

SMS_Class_ID("<whatever..perhaps <classname> or MICROSOFT|<classname>|1.0>")]

class <classname> : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

<datatype>
<fieldname1>;

[SMS_Report(TRUE)]

<datatype>
<fieldname2>;

[SMS_Report(TRUE)]

<datatype>
<fieldname3>;

};

DONE

As long as you follow this format, you should be able to create your own "groups" (classes) to report to your SMS database on any information you want to collect from the registry. Here is an example to get the McAfee keys for software version, DAT version, and engine version:

NOTE: Other examples available on the web to pull the McAfee data may use the Registry Instance Provider. However, I use the RPP to be able to pull the DAT version and Engine version from the 4.0.xx key, as well as the current software version from the TVD\VirusScan key.

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("McAfee", NOFAIL)

[DYNPROPS]

class McAfee

{

[key] string
KeyName="";

string

szCurrentVersionNumber;

string

szDatVersion;

string

szEngineVer;

string

szDatDate;

};

////////

// Declare the instance, one for McAfee 4.5...

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee 4.5";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\VirusScan|szCurrentVersionNumber"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatVersion"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("McAfee Virus Scan"),

SMS_Class_ID("MICROSOFT|McAfee|1.0")]

class McAfee : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

string

szCurrentVersionNumber;

[SMS_Report(TRUE)]

string

szDatVersion;

[SMS_Report(TRUE)]

string

szEngineVer;

[SMS_Report(TRUE)]

string

szDatDate;

};
NOTE: Just to reinforce how the RPP and RIP are distinct, observe how each individual key is defined when the class is instantiated. As long as you declare a field in the class for a key, and you know the complete key name, the RPP can pull the information.

SPECIAL CASE
Another benefit of the Registry Property Provider is the ability to not only pull from different keys in different locations, but you can also create multiple instances and put the information into the same data class.

For example, if I want to pull the McAfee keys in the example above, I define the class, and then in the instance of that class, I tell the provider where to find the data.

However, what if the keys aren’t always in that location? The example above grabs the registry keys for McAfee 4.5. If the client machines have an earlier version of McAfee, or if they have the Net Shield server version of McAfee, their DAT and engine information won’t be collected.

The next logical question is, “Do I have to create a new class to cover EVERY version?” Not exactly. You don’t have to create a new class. You want to pull the exact same fields as the first instance, just from different locations.

To do pull the McAfee information to cover all versions, you can create an instance for each version. You’re pulling the same data, just from different locations.

Example:

First I specify the namespace, delete the old class if it exists, and then define my new class.

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("McAfee", NOFAIL)

[DYNPROPS]

class McAfee

{

[key] string
KeyName="";

string

szCurrentVersionNumber;

string

szDatVersion;

string

szEngineVer;

string

szDatDate;

};

The first instance is one that may be familiar. It pulls information from the McAfee 4.5 registry keys and inserts it into the proper fields.
 [DYNPROPS]

instance of McAfee

{

KeyName="McAfee 4.5";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\VirusScan|szCurrentVersionNumber"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatVersion"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

Now I want to grab the registry keys for the Legacy McAfee versions. Notice that the information is pulled from different registry keys, but place into the same class fields. The only other difference is the change in the KeyName. This keeps the instances from overwriting eachother.
[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Legacy";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

Finally, I want to cover the McAfee version that I have loaded onto my servers. Again, I pull the same information, from different locations, into the same class fields, with a different key name.
[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Server (NetShield)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

[image: image3.png]i Resource Explorer _[ofx]

[e

Each client that compiles the MOF containing this information will have 3 records in the database; one for each instance. Although in this case it may seem like a waste because the clients should only have one version on their machine, there are situations when this is very valuable, as seen in some of the examples provided in the Appendices.
[image: image4.png]“in Resource Explorer

81 551 Contler
B Senis
=)

8] Sound Devies
& System

B System Enclosue

B TravelModk

B0 Video Confguaion

8] Video Contler

B0 widons el bsed
8] workstaion Satus

=] | = vaiable Progiams Manager Win32
|8 Hadnre Inverton Agert
|8 icense eteing
| BT Event To SNMP Trep Translaor
|8 Remote Corirl
| 8 5145 Clert Base Components
|8 software Ditibution
| 8 software Invertary Agert
| 8 Windows Management
|5 1.5 Dt Migrato {f requied)
151515 2.0 Cent Upgrade (TRUE is Disabled)

1085.0005
wa
wa

Installed
Installed

Installed
Installed
Installed
Installed
Installed

20014333010
20014333010

20014333010
20014333010
20014333010
20014333010
1085.0005

wa

wa

Example using the Registry Instance Provider

The basic steps to use the Registry Instance Provider are similar to those for the RPP:

1. Register the property provider.

2. Declare the class.

3. Declare what should be reported.

NOTE: Registering a provider simply consists of copying and pasting the same 15 lines of code from one MOF to another. There is no need to rewrite the same block of code. The only line that needs attention is the Name = “RegProv”, as this is the how the Class will refer to the provider.
Step 1 -- To register the Registry Instance Provider:

#pragma namespace("\\\\.\\root\\CIMV2")

// Register the Property provider to get Registry information

instance of __Win32Provider as $InstProv

{

Name = "RegProv" ;

ClsId = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider = $InstProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

SupportsDelete = FALSE;

SupportsEnumeration = TRUE;

};

Step 2 -- To declare the class:

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\<WhatKeyDoYouWant?>")

]

class <NameOfYourClass>

{

[key]

string
<WhatchacalltheKeyNameyoudon'tknow>;

[PropertyContext("ValueName1")]

string Field1;

[PropertyContext("ValueName2")]

string Field2;

[PropertyContext("ValueName3")]

string Field3;

};

Step 3 -- To declare what to report:

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Whachawannanameit"),

SMS_Class_ID("<whatever, MyClassID or maybe MICROSOFT|ADDREMPROGS|1.0")]

class <NameOfYourClass> : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string <WhatchacalltheKeyNameyoudon'tknow>;

[SMS_Report(TRUE)]

string Field1;

[SMS_Report(TRUE)]

string Field2;

[SMS_Report(TRUE)]

string Field3;

};

DONE

Just like the Property Provider Example, here is an example to obtain the contents of the Add/Remove Programs key using the Registry Instance Provider:

//=================================

//START Registry Key Information - SCHULTZMS

//

//10/04/2001

//=================================

//What namespace do you want the info in?

#pragma namespace("\\\\.\\root\\CIMV2")

// Register the Property provider to get Registry information

instance of __Win32Provider as $InstProv

{

Name = "RegProv" ;

ClsId = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider = $InstProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

SupportsDelete = FALSE;

SupportsEnumeration = TRUE;

};

// Declare the class

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows\\CurrentVersion\\Uninstall")

]

class AddRemovePrograms

{

[key]

string
ProdID;

[PropertyContext("ProdName")]

string ProdName;

[PropertyContext("Manufacturer")]

string Manufacturer;

[PropertyContext("ProdVersion")]

string ProdVersion;

};

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("AddRemovePrograms"),

ResID(9100),ResDLL("SMS_RXPL.dll"),

SMS_Class_ID("ADDREMPROGS|")]

class AddRemovePrograms : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string ProdID;

[SMS_Report(TRUE)]

string ProdName;

[SMS_Report(TRUE)]

string Manufacturer;

[SMS_Report(TRUE)]

string ProdVersion;

};
NOTE: Just to reinforce how the RPP and RIP are distinct, observe how the ClassContext line shows the single key that the RIP can pull information from. Yet it will recurse through the entire Uninstall key from start to finish.

Method 4: Adding information with Static class definitions.

Defining a static class is much like creating a NOIDMIF on a workstation. You determine what information you want, create a class (MIF) with that structure, and then you fill that class (MIF) with information.

NOTE: Just as mifwin.exe is used to create the MIF forms, the Asset Wizard in the SMS SDK prompts the user for data, creates the necessary class if needed, and writes the data to an instance.
The following example is a MOF that can be created and placed on a workstation for two "owners" of that workstation. It's pretty simple, so I won't go into detail:

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Static Asset Info MOF"),

SMS_Class_ID("MICROSOFT|Static_MOF|1.0")]

class Static_MOF : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string User;

[SMS_Report(TRUE)]

string Office;

[SMS_Report(TRUE)]

string Phone_Number;

};

#pragma namespace ("\\\\.\\root\\cimv2")

class Static_MOF

{

[key]

string User;

string Office;

string Phone_Number;

};

instance of Static_MOF

{

User = "John Smith";

Office = "Building 4, Room 26";

Phone_Number = "555-1234";

};

instance of Static_MOF

{

User = "Joan Smith";

Office = "Building 4, Room 26";

Phone_Number = "555-1235";

};

Not rocket science, but remember that this needs to be in a SEPARATE MOF than the SMS_DEF.MOF, and will be a unique file on each workstation.

NOTE: This can also be accomplished via a script or VB program. Scripts can be written to add, remove, and modify existing classes in the WMI repository. However that's a different document altogether!
Method 5: Pulling data using the View Provider

The View Provider is a tough cookie. I don't know all the details about this provider, its use, or the extent of its functionality, but I can provide what little information I know.

Also remember, you can download the WMISDK which may provide better information:

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/MSDN-FILES/027/001/552/msdncompositedoc.xml
Hardware vendors such as DELL, Compaq, and IBM, like to store proprietary information inside their own namespace in WMI. As a matter of fact, SQL Server, Exchange, Office, IE, and many other major software packages have their own namespace.

Because the SMS Hardware Inventory agent only looks at the root\cimv2 namespace during it's scans, it is unable to get data from the other namespaces. However this information can be obtained using a special provider called a View Provider, which mirrors the data from it's original location into the root\cimv2 namespace.

As with the other methods, the provider is registered first, then the class and the reporting class are declared. Marcus Oh gets credit for providing the following example. I only added a few comments:

//=================================

// Register the View Provider

//=================================

#pragma namespace("\\\\.\\Root\\CIMV2")

instance of __Win32Provider as $DataProv

{

Name = "MS_VIEW_INSTANCE_PROVIDER";

ClsId = "{AA70DDF4-E11C-11D1-ABB0-00C04FD9159E}";

ImpersonationLevel = 1;

PerUserInitialization = "True";

};

instance of __InstanceProviderRegistration

{

Provider = $DataProv;

SupportsPut = True;

SupportsGet = True;

SupportsDelete = True;

SupportsEnumeration = True;

QuerySupportLevels = {"WQL:UnarySelect"};

};

//=================================

// Declare the class

//=================================

#pragma namespace ("\\\\.\\root\\cimv2")

//Select the Dell information from the Dell_Chassis Class registered in the root\cimv2\dell

//namespace using the View Instance provider.

[union, ViewSources{"Select * from DELL_Chassis"}, ViewSpaces{"\\\\.\\root\\CIMV2\\Dell"}, Dynamic : ToInstance, provider("MS_VIEW_INSTANCE_PROVIDER")]

class DELL_Chassis : CIM_ManagedSystemElement

{

[PropertySources("AmpStatus")] string AmpStatus;

[PropertySources("AssetTag")] string AssetTag;

[PropertySources("Caption")] string Caption;

[PropertySources("CreationClassName"), key] string CreationClassName;

[PropertySources("Description")] string Description;

[PropertySources("FanStatus")] string FanStatus;

[PropertySources("InstallDate")] datetime InstallDate;

[PropertySources("LogFormat")] uint16 LogFormat;

[PropertySources("MemStatus")] string MemStatus;

[PropertySources("Model")] string Model;

[PropertySources("Name")] string Name;

[PropertySources("ProcStatus")] string ProcStatus;

[PropertySources("PsStatus")] string PsStatus;

[PropertySources("SerialNumber")] string SerialNumber;

[PropertySources("Status")] string Status;

[PropertySources("SystemClass")] uint16 SystemClass;

[PropertySources("SystemID")] uint16 SystemID;

[PropertySources("Tag"), key] string Tag;

[PropertySources("TempStatus")] string TempStatus;

[PropertySources("VoltStatus")] string VoltStatus;

};

//Declare the reporting class for each of the fields in the class declared above.

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Dell Server Summary"),

SMS_Class_ID("Dell|ServerSummary|1.0")]

class DELL_Chassis : SMS_Class_Template

{

[SMS_Report(FALSE)]

string AmpStatus;

[SMS_Report(TRUE)]

string AssetTag;

[SMS_Report(FALSE),key]

string CreationClassName;

[SMS_Report(FALSE)]

string FanStatus;

[SMS_Report(FALSE)]

uint16 LogFormat;

[SMS_Report(FALSE)]

string MemStatus;

[SMS_Report(TRUE)]

string Model;

[SMS_Report(FALSE)]

string ProcStatus;

[SMS_Report(FALSE)]

string PsStatus;

[SMS_Report(TRUE)]

string SerialNumber;

[SMS_Report(FALSE)]

uint16 SystemClass;

[SMS_Report(TRUE)]

uint16 SystemID;

[SMS_Report(FALSE),key]

string Tag;

[SMS_Report(FALSE)]

string TempStatus;

[SMS_Report(FALSE)]

string VoltStatus;

};

I haven't had the opportunity to explore where the other Hardware vendors store their information. Nor have I had the time to completely explore the possibilities of the View Provider. Further details and information are welcome.
Chapter 4 - How To Safely Test Your MOF
It's not that hard to get your MOF ready to rumble, but here's a good methodology to avoid any unnecessary cleanup:

1. Verify the file compiles correctly with mofcomp.exe -check

2. Compile the MOF with mofcomp.exe

3. Verify the data using wbemtest.exe

4. Initiate a Hardware Inventory.

5. Check hinv32.log

6. Verify the data is in the database.

Step 1: Use mofcomp.exe to verify the syntax in your MOF form.

Mofcomp.exe is located in c:\winnt\system32\wbem\. Be sure to use the -check switch. This will compile the MOF, but not actually attempt to change your repository. After it's done, open the mofcomp.log file in the wbem\logs directory and make sure you don't see any errors.

Example: MOFCOMP.exe -check c:\test\sms_def.MOF
Step 2: Compile on a test machine
Use the same command line above, except remove the -check switch. Remember, when you compile a MOF on a client machine, you’re writing on that chalkboard.

NOTE: When you attempt to compile a MOF you may get an error that a "Class has instances" or "an alias already exists." These problems are discussed in Chapter 7.

Step 3: Use WBEMTEST.exe to check your instances of each class
Verify that the MOF is actually pulling the correct data.
[image: image5.png]Qulfiers

DVNPROPS W BOOLEAN TAUE
Gave Obiest
KT 21 showmor
Add Qualfier_| _Ech Qualfer Deele Quair o
Propeties I Hide System Propeties [LocalOrly
[SUPERCLASS O STANG crulb 5| e
[CMOSTRING Moties 45
scCuneniversortluber M_STAING 450534
szDatDate CIM_STRING 2/6/2002 ‘Associators
2Daerion CMCSTRING 404185 ——
seEngieer CMLSTRING 4150 —| -Updatetpe—
KN —| > € Create only
Add Property Edit Property Delete Propety € Update only
& Either
Methads i
£ Compatible
€ Sefe
‘ >
A € Foce
Bdiatad Edifietod | | DeieHietiod |

To use wbemtest.exe (note this is covered in excruciating detail in Chapter 6):

1. Execute wbemtest.exe located in c:\winnt\system32\wbem.
2. Click on Connect.
3. Type "root\CIMV2" in the Server\Namespace area and click Login.
4. Click on Enum Classes, Click on "Recursive", and click OK.
5. Locate the class you entered and double click.
6. On the right side of the window, click on "Instances", and a new window should appear with the new instance that was created.
7. Double click on the instance and when the new window appears, scroll down in the middle box to view the values collected.

If the information you tried to collect is not there, follow the cleanup steps for the client mentioned in Chapter 6 and start again, or check Chapter 7 for troubleshooting tips.

Step 4: Force a hardware inventory

If the preceding steps confirm that the desired information is there, then you can force an inventory cycle on that client. This will collect the data and send it to the SMS database to make sure the proper tables are created.

To force a hardware inventory, open the Control Panel, double-click on System Management, click on the third tab, click on the hardware inventory agent, and click on "start component".

Step 5: Verify the MOF changes

Examine the hinv32.log file on the client, located in the %windir%\ms\sms\logs directory. Each class should be enumerated without errors when the hardware inventory is run. The section will start with:

**

*** Beginning SMS class enumeration. ***

**

You should then see your new classes properly enumerated:

…

CLASS - Process Class: Win32_Service
Hardware Inventory Agent
12/31/2001 9:43:28 PM
1412 (0x584)

CLASS - Process Class: Win32_SoundDevice
Hardware Inventory Agent
12/31/2001 9:43:29 PM
1412 (0x584)

CLASS - Process Class: Win32_TapeDrive
Hardware Inventory Agent
12/31/2001 9:43:29 PM
1412 (0x584)

CLASS - Process Class: McAfee

Hardware Inventory Agent
12/31/2001 9:43:29 PM
1412 (0x584)

…

Step 6: Verify that the MIF was properly parsed by the site server.

1. Open your SQL Enterprise manager on either your SQL Server (which often is your SMS Site Server).
2. Expand the server, databases, SMS_<sitecode>, and click Tables.
3. Scroll through all the tables in your SMS database and you should see one table for each new class you created. It should have the first 21 characters of the SMS_GROUP_NAME field followed by _DATA.

[image: image6.png]MachineldGroupi<Ref dbo User 04/17/2001 121657 PM

- Virus_Scan | dbo User 10/20/2001 11:42.024M
Modem_DATA dbo User 08/23/2001 84217 &M

Right click on this table, click on Open Table, click on Return all Rows, and verify that the data is in the table correctly.

NOTE: This may take some time to propagate from the child sites to the parents. Creating a MOF is a marathon, not a sprint, so if it doesn't appear right away, surf http://www.myitforum.com for other great information while you wait! <plug has been inserted>

If the tables have not been created, check the DDM logs and status messages. Often they will tell you that the MIF tried to expand a field that wasn't the right size, or that the MIF was just corrupt.

NOTE: Give the cleanup a bit of time when you use DELGRP.exe during cleanup. 5-10 minutes can mean the difference between successful data insertion, and getting the same error you got before, even after correcting the MOF issue.
Ultimately what you want is to be able to right click on the client, open Resource Explorer and see the data for that machine right beside all of the other fields. When you see this, you're ready to ask for your raise.

[image: image7.png]i Resource Explorer _[ofx]

[e

Chapter 5 - Pulling the Trigger

Distributing the MOF file to your clients is a cakewalk. When you're ready:

1. Make a backup copy of the SMS_DEF.MOF file from the site server and store it for safekeeping.

2. Copy the new MOF file into \\<servername\sms_<sitecode>\inboxes\clifiles.src\hinv on each of your site servers.

3. Allow a day to pass to make sure you don't get a flood of errors.

4. Once everything seems to be clear and you're getting the proper data in your database, you're in the clear!

NOTE: If you want your database to pull the information immediately, you can either force a hardware inventory on everyone's machine, or just set your hardware inventory cycle to "1 day" and you should have excellent results. Just remember to set it back to the regular schedule after you're satisfied with the results you've gotten.
Chapter 6 - HOW TO CLEAN UP!

Initially, this section was chapter two, since the first step in the IT world is to cover your [butt]. However, after this article turned into a full fledged Document (note the capital D), it became too technical, too early.

There are five steps to clean your entire SMS site of a class:

1. Remove the undesired MOF from the machine and restore a functional MOF.

2. Remove the classes from the WMI repository on the client using wbemtest.exe for a single client, or a script for numerous clients (see Enterprise Cleanup).

3. Remove the class information (tables, etc) from the site server using delgrp.exe.

4. Remove the classes from the WMI repository on the site server using wbemtest.exe.

5. Remove the stored procedures for the classes deleted using SQL Server Enterprise Manager.
Step 1: Remove the undesired MOF from the machine and restore a functional MOF.

1. This prevents any additional machines from getting the broken.
2. It's best to keep a series of MOF versions based upon changes you've made. You never know how far back you'll need to go to correct problems that arise.
3. The easiest way to restore a functional MOF to all clients is to follow the same steps in Chapter 5 and place the old MOF in the clifiles.src directory on the site server.

Step 2: Remove the classes from the WMI repository on the client.

Deleting the Reporting Class

1. This prevents future propagation of the data you are removing.
2. Execute WBEMTEST.exe located in c:\winnt\system32\wbem to connect to your repository to delete the instances and classes that have been created.

3. Click on Connect.

4. Type "root\CIMV2\SMS" in the Server\Namespace area and click Login.

[image: image8.png][windows Management Instrumentation Tester [

Namespace: e
ootcin2vsms T Coment
Enum Classes. Enum Instances... [Open Namespace... Create Refresher.
Create Class. Create Instance. Query. Edit Contest.
penClsss.._| _Dgenlstance... | Notficaon Quer
Delte lss.._| DelteInstance.. | Exeoute Mathod

Method Invocation Optins:

€ Asynchionous ™ Ensble Al Fivieges
€ Synchionous ™ Use Amended Qualfiers
 Semiggnchionous I™ Ditect Acoess on Read Dperstons.

™ Use Nextésyne (enum. onig)

5000 Timeou (msec., 1 for ifinte)

[i0 Batch Count fenum. onl)

5. Click on Enum Classes.
6. Click on Recursive and OK on the next window.
[image: image9.png]Superclass Info

[
Enter superclass name.

—— Careal

© Immediate only

i

& Fecirsia

7. A list of all Reporting Classes defined to that namespace will appear. Locate the class that needs to be deleted.
[image: image10.png]= —
m—

1230655 | man 3o 10 [Dore

WindzPovider [Provider)

[FddRemovePrograms (EM5_Class_Template)
Clieristate (SMS_Class_Template)
Holfises

IrteinelE splorer

Moniors (5MS_Class_Template)
Prisifiogist (SMS_Class_Template)
5MS_Class_Template ()

SMS_LogicaDisk [SMS_Class_Template]
SMS_Printer (SMS_Class_Template)
SMS_Processor (SMS_Class_Template)

B

dd Delete

8. Click on the Class.

9. Click on Delete.

10. Click on Close.

11. You have now deleted the Reporting Class. You now must delete the Data Class instance and the Data Class itself.

Deleting the Data Class

1. Click on Connect, but this time connect to root\cimv2.
2. Click on Recursive and OK once again to get a list of all the Data classes in the namespace.
3. Locate the class that needs deleted, but instead of deleting it immediately, double-click on the class to bring up the Data Class window.
4. Click on Instances on the right side of the window.
[image: image11.png]Qualfers
DVNPROPS W BOOLEAN TAUE
Gave Obiest
KT 21 showmor
Add Qualfier_| _Ech Qualfer Deele Quair ——
Propeties I Hide System Propeties [LocalOrly
cLiss TV STRING _Hchiee S Deived
TOERNATION CIM STRING | CIM_FLAG_ARRAY
ovhasTY CMLSTRING Mchiee
|_GENUS CIM_SINT32 1(0x1) Fteiees
THaMESPACE CMSTRING ROOT\CMV2
[ZPaTH CMSTAING \WWSMSS2KAROOT\CIM [[~ Undate ype—
afoeeary e BT i _>l_| ® oty
Add Property Edit Property Delete Propety € Update only
& Either
Methads i
& Compatible
C Safe
‘ >
A © Force
AddMiethod Edthethod | Delte Method |

5. This will bring up the Instance window for that Data Class.
6. Click on the Instance.
7. Click on Delete, and repeat for all instances.

8. Click on Close.
[image: image12.png]= —
[E———

o] il d |

chfes 4.5
chies Legacy’”
chles Server (NetSHield)"

WcAfes Keytlam
Mcafes KeyMam
Mcafes KeyMam

9. After the instance is deleted, you can delete the Data Class just as you deleted the Reporting class.
10. Exit WBEMTEST.

Note: Be sure to only delete classes and instances that you have created. The other classes defined in the repository should not be touched. If they are deleted, your machine may have issues functioning properly.

NOTE: Incidentally, this program can also be used to view what data your MOF file has collected. When you bring up an instance, you can double-click on the object that appears. In the middle of the Object Editor window, you can scroll down and view what data has been collected, and what has not, to better get a grip on what area of your MOF is having issues. You can also view the class structure, and the MOF script, that created that instance. However, I wouldn't recommend doing anything else in this window other than viewing the information, and clicking "Close".
NOTE: Also note that you may see more information in the WMI than is actually being reported to SMS. Remember, the only information that the hardware inventory collects, is that which is been defined in the root\cimv2\sms namespace with a reporting class.

Step 3: Remove the group information from the site server(s).

1. This deletes the tables and most class related information from the SMS DB.
2. Use DELGRP.exe from the BORK (Back Office Resource Kit). Most commonly located in c:\Program Files\Resource Kit\SMS\DBMAINT\DELGRP\
3. Copy the file to the site server and execute it from the command prompt with the entire Class ID as a parameter. (ex. c:\delgrp\delgrp "MICROSOFT|MRMOTT|1.0")

NOTE: Information for classes you have created in the past can be found in the PROPERTYDISPLAYNODE table in your SMS database, including their proper name and ClassID in case you have forgotten it. This can be viewed using the SQL Enterprise Manager using the steps from Chapter 4, Step 6.

Step 4: Remove the classes from the WMI repository on the site server(s).
1. Use the same procedure in Step 2 to delete the Data Classes on the site server.
2. The following cleans the attribute class list for query and collection creation.
3. After deleting the class information connect to root\sms\site_<sitecode>
4. Locate three references for each class and delete them:

· SMS_G_System_<classname>
· SMS_GEH_System_<classname>
· SMS_GH_System_<classname>

Step 5: Remove the stored procedures for the classes deleted.
1. DELGRP doesn't delete the stored procedures for the classes. You'll need to manually drop them from the database.
2. Open the SQL Server Enterprise Manager (either on your SQL server, or on your local machine if you have the SQL Enterprise tools loaded), connect to the SQL server housing your SMS database. (Steps below are for SQL 2000, SQL 7.0 may be slightly different)
3. Expand the server, databases, SMS_<sitecode>, and click on Stored Procedures.
4. Locate the two stored procedures for each class you deleted. One starts with a "d" and one starts with a "p".
5. Right click on the stored procedure, click on "delete".
6. On the next window, click on "Drop All". Don't worry, only the stored procedure you right clicked on will be dropped.
Using these steps, you should be able to clean the client of errant classes, as well as clean the information off of the site server. Although it looks extremely complex, it is really quite simple. Once you are familiar with the process, it will be a trivial matter.
Chapter 6.5 - Enterprise Cleanup
The steps discussed above are the steps necessary to remove an undesired class from your SMS site after it has been added to a single or small number of clients. However, removing a class that has been propagated to the entire site is slightly unrealistic.

There are 3 options to remove this class from your site:

1. Modify the SMS_DEF.MOF file and edit the Reporting Class for the undesired class.
2. Run a script on all workstations to delete the undesired class.
3. Modify the SMS_DEF.MOF file to delete the Data and Reporting classes from WMI.

Option 1 – Modify the Reporting Class
Earlier in this document it was discussed that no matter what Data Classes are entered into WMI, the only information that propagates to SMS are those that have matching Reporting Classes in the root\cimv2\sms namespace. And even then, only if they have their Class reporting field set to “TRUE”.

The easiest way to get a class to stop reporting is to modify your SMS_DEF.MOF file and change the Class reporting field for the Data Class you do not want anymore from TRUE to FALSE.

Example:

[SMS_Report(FALSE),

SMS_Group_Name("Travel Mode"),

SMS_Class_ID("TravelMode")]

class TravelMode : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

uint32

TravelMode;

};

In the above example you will notice that even though the fields are set to TRUE, the Class itself is set to FALSE. The Class setting overrides any field settings, and therefore this class will no longer report to SMS. Deploy the MOF and you’re done.

This change in your MOF is quick and painless, except the undesired class still exists on all your client workstations. If you do not mind residual data, this may be your best option.
Option 2 – Run a script on all workstations

Some administrators and environments are not keen on leaving residual data on their client workstations. They also are not keen on having to tough every client and manually remove the information.

Luckily there is an alternative. I mentioned earlier that certain scripts can be used to add classes to WMI. Scripts can also be used to remove classes from WMI. This script will either need to be advertised via SMS, or set up in the logon script, but as long as it runs on all machines, it will clean their WMI of the undesired class.

An example of a pseudo-script to do such a task:

classname="Static_MOF"

 Set loc = CreateObject("WbemScripting.SWbemLocator")

Set WbemServices = loc.ConnectServer(, "root\cimv2")

 Set data = WbemServices.ExecQuery("Select * From " & classname)

For Each datum In data 'data class's data, if any

 datum.Delete_

Next

wbemServices.Get(classname).Delete_ 'the data class

 Set WbemServices = loc.ConnectServer(, "root\cimv2\sms")

wbemServices.Get(classname).Delete_ 'the reporting class

Option 3 – Modify the SMS_DEF.MOF to delete the class

There are also some administrators and sites that aren’t too keen on modifying login scripts or deploying changes site-wide to clean up messes. Luckily there is a third option that can be used.
A pragma line can be placed into your existing SMS_DEF.MOF file that will delete the undesired classes.

Example:

#pragma deleteclass("classname", NOFAIL)

To use this #pragma function, make sure you’re using the appropriate namespace, place the line in your SMS_DEF.MOF and change classname to the name of the class you want to delete. The last parameter of the function is either FAIL or NOFAIL.

· Use FAIL if you would like the compiler to error out if the class is not found.

· Use NOFAIL if you would like the compiler to continue even if the class is not found.

Example:
#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("TravelMode", NOFAIL)
#pragma namespace("\\\\.\\root\\cimv2\\SMS")

#pragma deleteclass("TravelMode", NOFAIL)

The above example would delete both the TravelMode Data Class, as well as the TravelMode Reporting Class.
Chapter 7 - Troubleshooting

This Chapter will just offer a few tips on some basic errors and issues that may occur when you first start working on editing your MOF file. This is by no means comprehensive, but it may help you through some rough spots.

I’m getting the error that “An alias already exists” when I compile my MOF.

If you get this error, most likely it means that you’re trying to define a provider twice. A provider only needs to be defined once per MOF, and therefore if you happen to have it in your MOF twice, you’ll need to search for the duplicate and eliminate it.

I’m getting the error “Class has Instances” when I compile my MOF.
This is a common error when you use the Registry Property Provider. Unlike the Registry Instance Provider, the Property Provider defines its class first, and then defines a separate instance or instances.

When you compile the MOF again, and the compiler sees even the most minor change in the class, it will halt the compilation stating that the Class you’re trying to add already has instances. Because an instance is based upon the class, it doesn’t want to let you change the class while an instance exists. You can’t remove a building foundation when the building is still on top of it.
To eliminate this error, you can use the process described in Chapter 6, Option 3 to delete the class prior to recreating it.

Example:

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("TravelMode", NOFAIL)

[DYNPROPS]

class TravelMode

{

[key] string
KeyName="";

uint32

TravelMode;

};
I copied and pasted stuff from someone else’s MOF, but the data isn’t showing!
The most common question asked is, “Why isn’t it working?” Although Chapter 4 covers a lot of what you can do to trace your steps, here are a few of the most common mistakes made when you copy and paste from someone else’s MOF.

1. Verify if you are copying just a Reporting Class that the last namespace change was to root\cimv2\sms

2. Verify if you are copying a Data Class as well that the last namespace change was to root\cimv2, and then switch to root\cimv2\sms

3. Remember that even if you copy a Data Class, it will not report information unless a matching reporting class is created.

4. Is the reporting class set to TRUE? Are the fields set to TRUE?

5. Do you have the registry providers registered in your MOF if you’re using them?

6. Are you registering the right provider for what you’re trying to do?

7. Did you run a hardware inventory on the client?

8. Trace your steps…if the MOF compiled with no errors, use wbemtest.exe to check if the data is in the WMI. If it is, check the hardware inventory logs to see if it was enumerated correctly. If it was, check the site server and see if there’s a backlog of data. If there isn’t, check to see if the tables exist in the database.
Conclusion
That's it! You've now learned how to expand your hardware inventory horizons. If you're REALLY interested in the meat of the subject, read WMI Essentials by Marcin Policht, and keep on top of things at www.myitforum.com.

Comments and corrections are always welcome.

Michael S. Schultz

SMS Consultant

ewasteland@hotmail.com
schultzms@groton.pfizer.com
DISCLAIMER: Modifying your MOF can get hairy...I accept no responsibility for things blowing up. Please don't sue me, cause all you'll get is 7 quarters and a biscuit. Use at your own risk!

Appendix A

Another article on cleaning up your MOF information:

http://www.myitforum.com/articles/view.asp?t=Cleaning+up+MOF+Information&id=674&z=1&s=SMS+2%2Ex
Issues connecting using delgrp.exe? Check your SQL Client Network Utility.

http://www.myitforum.com/articles/view.asp?t=PreInst%2C+Delgrp%2C+and+SQL+2000&id=309&z=1&s=SMS+2%2Ex
Trouble finding the class ID and class name? Check the PropertyDisplayNode table in your SMS database.

A list of all Win32 hardware classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_32hard1_9v77.asp
A list of all Win32 classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_32hard1_3d4j.asp
A list of all WMI classes:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/r_wmicls_00j7.asp
Microsoft point-and-click MOF modification…some good info:

http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/sms/deploy/confeat/getasset.asp
Other very valuable information and downloads can be found on http://www.myitforum.com.
Appendix B - Arbitrary Win32 class creation

NOTE: To create this, I copied an existing reporting class, changed the group name, changed the class ID, changed the class name, and then pasted in the existing fields from MSDN. I copied [SMS_Report(FALSE)] and pasted it between each line, changed FALSE to TRUE on the fields I wanted, and then determined the KEY fields.

A key field is the field that will make the class unique in the SMS database. In this case, because there can be more than one level of cache memory, I needed 2 keys: Name, and Level of the cache. To make a key, the SMS_Report line should look like this: [SMS_Report(TRUE), key]

It may be easier to just use the MOF GENERATOR in the CIM Studio for some of the larger classes, or to use the Dudeworks SMS_DEF.MOF Class reporting exporter (http://www.dudeworks.net/)

[SMS_Report(TRUE),

SMS_Group_Name("Cache Memory"),

SMS_Class_ID("MICROSOFT|CacheMemory|1.0")]

class Win32_CacheMemory : SMS_Class_Template

{

[SMS_Report(FALSE)]

 uint16 Access;

[SMS_Report(FALSE)]

 uint8 AdditionalErrorData[];

[SMS_Report(FALSE)]

 uint16 Associativity;

[SMS_Report(FALSE)]

 uint16 Availability;

[SMS_Report(FALSE)]

 uint64 BlockSize;

[SMS_Report(FALSE)]

 uint32 CacheSpeed;

[SMS_Report(FALSE)]

 uint16 CacheType;

[SMS_Report(FALSE)]

 string Caption;

[SMS_Report(FALSE)]

 uint32 ConfigManagerErrorCode;

[SMS_Report(FALSE)]

 boolean ConfigManagerUserConfig;

[SMS_Report(FALSE)]

 boolean CorrectableError;

[SMS_Report(FALSE)]

 string CreationClassName;

[SMS_Report(FALSE)]

 uint16 CurrentSRAM[];

[SMS_Report(FALSE)]

 string Description;

[SMS_Report(FALSE)]

 string DeviceID;

[SMS_Report(FALSE)]

 uint64 EndingAddress;

[SMS_Report(FALSE)]

 uint16 ErrorAccess;

[SMS_Report(FALSE)]

 uint64 ErrorAddress;

[SMS_Report(FALSE)]

 boolean ErrorCleared;

[SMS_Report(FALSE)]

 uint16 ErrorCorrectType;

[SMS_Report(FALSE)]

 uint8 ErrorData[];

[SMS_Report(FALSE)]

 uint16 ErrorDataOrder;

[SMS_Report(FALSE)]

 string ErrorDescription;

[SMS_Report(FALSE)]

 uint16 ErrorInfo;

[SMS_Report(FALSE)]

 string ErrorMethodology;

[SMS_Report(FALSE)]

 uint64 ErrorResolution;

[SMS_Report(FALSE)]

 datetime ErrorTime;

[SMS_Report(FALSE)]

 uint32 ErrorTransferSize;

[SMS_Report(FALSE)]

 uint32 FlushTimer;

[SMS_Report(FALSE)]

 datetime InstallDate;

[SMS_Report(FALSE)]

 uint32 InstalledSize;

[SMS_Report(FALSE)]

 uint32 LastErrorCode;

[SMS_Report(TRUE), Key]

 uint16 Level;

[SMS_Report(FALSE)]

 uint32 LineSize;

[SMS_Report(FALSE)]

 uint16 Location;

[SMS_Report(FALSE)]

 uint32 MaxCacheSize;

[SMS_Report(TRUE)]

 string Name;

[SMS_Report(FALSE)]

 uint64 NumberOfBlocks;

[SMS_Report(FALSE)]

 string OtherErrorDescription;

[SMS_Report(FALSE)]

 string PNPDeviceID;

[SMS_Report(FALSE)]

 uint16 PowerManagementCapabilities[];

[SMS_Report(FALSE)]

 boolean PowerManagementSupported;

[SMS_Report(TRUE)]

 string Purpose;

[SMS_Report(FALSE)]

 uint16 ReadPolicy;

[SMS_Report(FALSE)]

 uint16 ReplacementPolicy;

[SMS_Report(FALSE)]

 uint64 StartingAddress;

[SMS_Report(FALSE)]

 string Status;

[SMS_Report(FALSE)]

 uint16 StatusInfo;

[SMS_Report(FALSE)]

 uint16 SupportedSRAM[];

[SMS_Report(FALSE)]

 string SystemCreationClassName;

[SMS_Report(FALSE)]

 boolean SystemLevelAddress;

[SMS_Report(FALSE), Key]

 string SystemName;

[SMS_Report(FALSE)]

 uint16 WritePolicy;

};

Appendix C – MONSTER MOF

There was a request at one point in time to create a Monster MOF (as coined by Ed Aldrich). This MOF would contain most if not all current “additions” to a MOF file that can be added to other administrators MOFs with just a quick copy and paste.

Because of this, I created a Monster MOF addition that can be pasted onto the end of your existing SMS_DEF.MOF file with a minimal (but still existent) chance for error. Remember, Code Blocks that are [DISABLED] are surrounded by /* and */. If you want to comment out sections of your own, do the same around those Code Blocks.
///

//START NON-Standard MOF Modifications - SCHULTZMS

//

// 02/07/2002

//

// Modifications to this MOF were made to obtain more detailed client information

// during the hardware inventory. The following classes were added, but not

// necessarily enabled. To enable the "disabled" classes, remove the /* and */

// comment characters in front and rear of that particular section.

//

// Classes added:

//
--Win32_SystemEnclosure

//
--Win32_BaseBoard

//
--Win32_QuickFixEngineering [DISABLED]

//
--Add/Remove Programs

//
--Hotfixes

//
--Printer Mappings for current user [DISABLED]

//
--Network Mappings for current user [DISABLED]

//
--Network Associates (McAfee) AntiVirus (4.5, 4.0x legacy, 4.5 NetShield Server DAT,

//

DAT Date, Engine, and Product versions)

//
--Basic Client Information (Status, WBEM version, Travel mode)

//
--Advanced Client Component Information (Detailed Status and Upgrade Status)

//
--Internet Explorer (Version, Minor Version, Proxy, and connection settings)

//
--MSI Windows Installer-Based Application Data

//
--Norton AntiVirus (Version 5, 7, DAT, and Product versions) [DISABLED]

//
--Dell Specific Information [DISABLED]

//

//
NOTE:
In addition to these classes, the following text can be added in the

//

lines above this Non-Standard section. They can be added at the

//

end of the Network Adapter Configuration Class to provide more

//

detailed DNS and WINS information. Just be sure to remove the

//

"//" comment lines from in front of them.

//

// [SMS_Report(TRUE)]

// string DNSDomain;

// [SMS_Report(TRUE)]

// string DNSHostName;

// [SMS_Report(TRUE)]

// string DNSServerSearchOrder;

// [SMS_Report(TRUE)]

// string IPXFrameType;

// [SMS_Report(TRUE)]

// string IPXMediaType;

// [SMS_Report(TRUE)]

// string WINSPrimaryServer;

// [SMS_Report(TRUE)]

// string WINSSecondaryServer;

//

//

//---

//-- --

//-- Class: Win32_SystemEnclosure --

//-- IBM, Compaq, and DELL often store vital information here. --

//-- --

//-- NOTE: If you choose to copy/paste this into your MOF, --

//-- be sure a #pragma statement that looks like --

//-- #pragma namespace ("\\\\.\\root\\cimv2\\SMS") is the --

//-- last to appear before this script. --

//-- --

//---

[SMS_Report(TRUE),

SMS_Group_Name("System Enclosure"),

SMS_Class_ID("MICROSOFT|System_Enclosure|1.0")]

class Win32_SystemEnclosure : SMS_Class_Template

{

[SMS_Report(TRUE), key]

string Tag;

[SMS_Report(True)]

string Caption;

[SMS_Report(True)]

string Description;

[SMS_Report(True)]

string Manufacturer;

[SMS_Report(True)]

string Name;

[SMS_Report(TRUE)]

string SerialNumber;

[SMS_Report(TRUE)]

string SMBIOSAssetTag;

[SMS_Report(True)]

string Version;

[SMS_Report(True)]

uint16

ChassisTypes;

};

//---

//-- --

//-- Class: Win32_BaseBoard --

//-- Again, often manufacturers store vital information here --

//-- --

//-- NOTE: If you choose to copy/paste this into your MOF, --

//-- be sure a #pragma statement that looks like --

//-- #pragma namespace ("\\\\.\\root\\cimv2\\SMS") is the --

//-- last to appear before this script. --

//-- --

//---

[SMS_Report(TRUE),

 SMS_Group_Name("BaseBoard Information"),

SMS_Class_ID("MICROSOFT|Baseboard|1.0")]

class Win32_BaseBoard : SMS_Class_Template

{

[SMS_Report(TRUE), key]

string

Tag;

[SMS_Report(FALSE)]

string ConfigOptions;

[SMS_Report(FALSE)]

string Depth;

[SMS_Report(TRUE)]

string Description;

[SMS_Report(FALSE)]

string Height;

[SMS_Report(FALSE)]

string HostingBoard;

[SMS_Report(TRUE)]

string HotSwappable;

[SMS_Report(FALSE)]

string InstallDate;

[SMS_Report(TRUE)]

string Manufacturer;

[SMS_Report(TRUE)]

string Model;

[SMS_Report(TRUE)]

string Name;

[SMS_Report(FALSE)]

string OtherIdentifyingInfo;

[SMS_Report(FALSE)]

string PartNumber;

[SMS_Report(FALSE)]

string

PoweredOn;

[SMS_Report(TRUE)]

string Product;

[SMS_Report(FALSE)]

string Removable;

[SMS_Report(FALSE)]

string Replaceable;

[SMS_Report(FALSE)]

string RequirementsDescription;

[SMS_Report(FALSE)]

string RequiresDaughterBoard;

[SMS_Report(TRUE)]

string

SerialNumber;

[SMS_Report(FALSE)]

string SKU;

[SMS_Report(FALSE)]

string SlotLayout;

[SMS_Report(FALSE)]

string

SpecialRequirements;

[SMS_Report(TRUE)]

string Status;

[SMS_Report(TRUE)]

string Version;

[SMS_Report(FALSE)]

string Weight;

[SMS_Report(FALSE)]

string Width;

};

//---

//-- --

//-- Class: Win32_QuickFixEngineering --

//-- Again, often manufacturers store vital information here --

//-- --

//-- NOTE: If you choose to copy/paste this into your MOF, --

//-- be sure a #pragma statement that looks like --

//-- #pragma namespace ("\\\\.\\root\\cimv2\\SMS") is the --

//-- last to appear before this script. --

//-- --

//---

//-- --

//-- WARNING: Be aware of QFE article about this class and --

//-- the problems it may have with Windows 2000 machines! --

//-- --

//-- [Q279225] --

//-- WMI Win32_QuickFixEngineering Queries Hang Winmgmt Process--

//-- --

//-- [DISABLED] because of the above issue. --

//-- Enable it if you dare! --

//-- --

//---

/*

//COMMENTED OUT

[SMS_Report(TRUE),

SMS_Group_Name("Quick Fix Engineering Hotfixes"),

SMS_Class_ID("MICROSOFT|QFE|1.0")]

class Win32_QuickFixEngineering : SMS_Class_Template

{

[SMS_Report(FALSE)]

string CSName;

[SMS_Report(TRUE)]

string FixComments;

[SMS_Report(TRUE), Key]

string HotFixID;

[SMS_Report(TRUE)]

string InstalledBy;

[SMS_Report(True),SMS_Units("DateString")]

string InstalledOn;

[SMS_Report(TRUE), Key]

string ServicePackInEffect;

};

*/

//---

//-- --

//-- PROVIDER REGISTRATION --

//-- --

//-- Do Not Remove This Section. It is vital to pull registry --

//-- keys. Both the Property and Instance providers are --

//-- registered here. --

//-- --

//-- This section must be copy/pasted ONE TIME before any of --

//-- the following MOF modifications are used. But only once! --

//-- --

//---

#pragma namespace("\\\\.\\root\\CIMV2")

////////

// Register the Property Provider

////////

instance of __Win32Provider as $PropProv

{

Name = "RegPropProv";

Clsid = "{72967901-68EC-11d0-B729-00AA0062CBB7}";

};

instance of __PropertyProviderRegistration

{

Provider = $PropProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

};

////////

// Register the Instance Provider

////////

instance of __Win32Provider as $InstProv

{

Name = "RegProv" ;

ClsId = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider = $InstProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

SupportsDelete = TRUE;

SupportsEnumeration = TRUE;

};

//---

//-- --

//-- Class: AddRemovePrograms --

//-- This section will pull the Add Remove Programs list from --

//-- the client machine. --

//-- --

//---

////////

// Declare the class using the Instance Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\CIMV2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows\\CurrentVersion\\Uninstall")

]

class AddRemovePrograms

{

[key]

string
ProdID;

[PropertyContext("DisplayName")]

string DisplayName;

[PropertyContext("Publisher")]

string Publisher;

[PropertyContext("DisplayVersion")]

string Version;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Add or Remove Programs"),

SMS_Class_ID("MICROSOFT|ADDREMPROGS|1.0")]

class AddRemovePrograms : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string ProdID;

[SMS_Report(TRUE)]

string DisplayName;

[SMS_Report(TRUE)]

string Publisher;

[SMS_Report(TRUE)]

string Version;

};

//---

//-- --

//-- Class: Hotfixes --

//-- This section pulls the Hotfix information. (i.e. Q123456)--

//-- --

//---

////////

// Declare the class using the Instance Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Hotfix")

]

class HotFixes

{

[key]

string QNumber;

[PropertyContext("Installed")]

uint32 Installed;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Hotfixes"),

SMS_Class_ID("MICROSOFT|HOTFIXES|1.0")]

class HotFixes : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string QNumber;

[SMS_Report(TRUE)]

uint32 Installed;

};

//---

//-- --

//-- Class: Pull Printer Mappings --

//-- This section will pull the printer mappings for the --

//-- current user in the form ",,printserver\printername" --

//-- --

//-- [DISABLED] Apparently HINV isn't keen on pulling HKCU. --

//-- Leaving it in, in case this changes. --

//-- --

//---

/*

////////

// Declare the class using the Instance Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_Current_User\\Printers\\Connections")

]

class MOFPrinterConnections

{

[key]

string
PrinterConnection;

[PropertyContext("Server")]

string Server;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Printer Connections"),

SMS_Class_ID("MOFPrinterConnections")]

class MOFPrinterConnections : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string PrinterConnection;

[SMS_Report(TRUE)]

string Server;

};

*/

//---

//-- --

//-- Class: Pull Network Mappings --

//-- This section will pull the network mappings for the --

//-- current user. Similar to the printer mappings. --

//-- --

//-- [DISABLED] Apparently HINV isn't keen on pulling HKCU. --

//-- Leaving it in, in case this changes. --

//-- --

//---

/*

////////

// Declare the class using the Instance Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_Current_User\\Network")

]

class NetworkMappings

{

[key]

string
DriveLetterMapped;

[PropertyContext("RemotePath")]

string RemotePath;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Network Mappings"),

SMS_Class_ID("NetworkMappings")]

class NetworkMappings : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string DriveLetterMapped;

[SMS_Report(TRUE)]

string RemotePath;

};

*/

//---

//-- --

//-- McAfee Registry Keys --

//-- This section pulls the McAfee version keys for 4.5, 4.03, --

//-- and 4.5 Server. --

//-- --

//---

////////

// Declare the class using the Property Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("McAfee", NOFAIL)

[DYNPROPS]

class McAfee

{

[key] string
KeyName="";

string

szCurrentVersionNumber;

string

szDatVersion;

string

szEngineVer;

string

szDatDate;

};

////////

// Declare the instance, one for McAfee 4.5...

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee 4.5";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\VirusScan|szCurrentVersionNumber"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatVersion"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// one for McAfee 4.03 and older...

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Legacy";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// and one for McAfee 4.5 Server (NetShield)

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Server (NetShield)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("McAfee Virus Scan"),

SMS_Class_ID("MICROSOFT|McAfee|1.0")]

class McAfee : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

string

szCurrentVersionNumber;

[SMS_Report(TRUE)]

string

szDatVersion;

[SMS_Report(TRUE)]

string

szEngineVer;

[SMS_Report(TRUE)]

string

szDatDate;

};

//---

//-- --

//-- Travel Mode --

//-- This section will inform you if travel mode is turned on --

//-- --

//-- Results:
0 (0x0) if it's off --

//--

232144 (0x00040000) if it's on, with a prompt --

//-- 232145 (0x00040001) if it's on, with no prompt --

//--

1 (0x1) if it's off, but USED to be turned on --

//--

but with no prompt --

//---

////////

// Declare the class using the Property Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("TravelMode", NOFAIL)

[DYNPROPS]

class TravelMode

{

[key] string
KeyName="";

uint32

TravelMode;

};

////////

// Declare the instance

////////

[DYNPROPS]

instance of TravelMode

{

KeyName="Travel Mode";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Configuration\\Client Properties|Reserved2"),

Dynamic, Provider("RegPropProv")] TravelMode;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Travel Mode"),

SMS_Class_ID("TravelMode")]

class TravelMode : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

uint32

TravelMode;

};

//---

//-- --

//-- MICROSOFT SCRIPTED, I just commmented --

//-- ADVANCED Client Information Registry Keys --

//-- This section will pull ADVANCED client data --

//-- --

//---

////////

// This class exposes the SMS Client Component state attributes

////////

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("ClientState", NOFAIL)

[DYNPROPS]

class ClientState

{

[key] string
Component="";

string

State;

string

Version;

string

PendingVersion;

string

PendingTime;

};

////////

// declare the instances, one for each "component"...

////////

[DYNPROPS]

instance of ClientState

{

Component="Available Programs Manager Win32";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Available Programs Manager Win32\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Available Programs Manager Win32\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Available Programs Manager Win32\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Available Programs Manager Win32\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="Hardware Inventory Agent";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Hardware Inventory Agent\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Hardware Inventory Agent\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Hardware Inventory Agent\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Hardware Inventory Agent\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="License Metering";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\LICENSE METERING\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\LICENSE METERING\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\LICENSE METERING\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\LICENSE METERING\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="NT Event To SNMP Trap Translator";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\NT Event To SNMP Trap Translator\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\NT Event To SNMP Trap Translator\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\NT Event To SNMP Trap Translator\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\NT Event To SNMP Trap Translator\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="Remote Control";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Remote Control\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Remote Control\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Remote Control\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Remote Control\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="SMS Client Base Components";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\SMS Client Base Components\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\SMS Client Base Components\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\SMS Client Base Components\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\SMS Client Base Components\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="Software Distribution";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Distribution\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Distribution\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Distribution\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Distribution\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="Software Inventory Agent";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Inventory Agent\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Inventory Agent\\Installation Properties|Installed Version"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Inventory Agent\\Installation Properties|Pending Operation Version"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Software Inventory Agent\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

[DYNPROPS]

instance of ClientState

{

Component="Windows Management";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Windows Management\\Installation Properties|SMS Client Installation State"),

Dynamic, Provider("RegPropProv")] State;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\WBEM|Build"),

Dynamic, Provider("RegPropProv")] Version;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\WBEM|Build"),

Dynamic, Provider("RegPropProv")] PendingVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Client Components\\Windows Management\\Installation Properties|Pending Operation Time"),

Dynamic, Provider("RegPropProv")] PendingTime;

};

////////

// This "component" is virtual, but needs to be represented in most cases.

////////

[DYNPROPS]

instance of ClientState

{

Component="SMS 1.x Client Migration (if required)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Configuration\\SMS 1.2 Client Migration|Overall 1.x migration status"),

Dynamic, Provider("RegPropProv")] State;

Version="n/a";

PendingVersion="n/a";

PendingTime="n/a";

};

////////

// This "component" is virtual, but needs to be represented in most cases.

////////

[DYNPROPS]

instance of ClientState

{

Component="SMS 2.0 Client Upgrade (TRUE is Disabled)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Configuration\\Client Properties|Disable CCIM Core Command Operations"),

Dynamic, Provider("RegPropProv")] State;

Version="n/a";

PendingVersion="n/a";

PendingTime="n/a";

};

////////

// This "component" is virtual, but needs to be represented in most cases.

////////

[DYNPROPS]

instance of ClientState

{

Component="SMS 2.0 Pre-SP2 Client Upgrade (TRUE is Disabled)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\SMS\\Client\\Configuration\\Client Properties|Disable Legacy CCIM Core Command Operations"),

Dynamic, Provider("RegPropProv")] State;

Version="n/a";

PendingVersion="n/a";

PendingTime="n/a";

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\sms")

[SMS_Report(TRUE),

SMS_Group_Name("SMS Client State"),

SMS_Class_ID("MICROSOFT|SMS_CLIENT|1.0")]

class ClientState : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

Component;

[SMS_Report(TRUE)]

string

State;

[SMS_Report(TRUE)]

string

Version;

[SMS_Report(TRUE)]

string

PendingVersion;

[SMS_Report(TRUE)]

string

PendingTime;

};

//---

//-- --

//-- Internet Explorer Keys --

//-- This section will pull details about IE --

//-- --

//---

////////

// Declare the class using the Property Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("InternetExplorer", NOFAIL)

[DYNPROPS]

class InternetExplorer

{

[key] string
KeyName="";

string

IEVersion;

string

MinorVersion;

};

////////

// Declare the instance

////////

[DYNPROPS]

instance of InternetExplorer

{

KeyName="IE Setup";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Internet Explorer|Version"),

Dynamic, Provider("RegPropProv")] IEVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Internet Settings|MinorVersion"),

Dynamic, Provider("RegPropProv")] MinorVersion;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Internet Explorer"),

SMS_Class_ID("InternetExplorer")]

class InternetExplorer : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

string

IEVersion;

[SMS_Report(TRUE)]

string

MinorVersion;

};

//---

//-- --

//-- MSI Windows Installer-Based Applications --

//-- This section will pull the MSI information --

//-- --

//---

////////

// Register the Provider for MSI data retrieval

////////

#pragma namespace("\\\\.\\root\\cimv2")

Instance of __Win32Provider as $Z

{

 Name = "MSIProv";

 ClsId = "{BE0A9830-2B8B-11d1-A949-0060181EBBAD}";

 ImpersonationLevel = 1;

 PerUserInitialization = "TRUE";

};

Instance of __InstanceProviderRegistration

{

 Provider = $Z;

 SupportsGet = "TRUE";

 SupportsEnumeration = "TRUE";

 SupportsPut = "TRUE";

 SupportsDelete = "TRUE";

};

Instance of __MethodProviderRegistration

{

 Provider = $Z;

};

[Locale(1033) : ToInstance,UUID("{CE3324AA-DB34-11d2-85FC-0000F8102E5F}") : ToInstance,provider("MSIProv") : ToInstance,dynamic,MappingStrings{"Microsoft.MSI"} : ToSubclass]

class Win32_Product : CIM_Product

{

 [Read : ToSubclass,Value{-6, -2, -1, 1, 2, 5},ValueMap{"Bad Configuration", "Invalid Argument", "Unknown Package", "Advertised", "Absent", "Installed"} : ToSubclass] sint16 InstallState;

 [Read : ToSubclass] string PackageCache;

 [Read : ToSubclass] string InstallDate;

 [Read : ToSubclass] string InstallLocation;

 [static,Implemented] uint32 Install([in] string PackageLocation,[in] string Options,[in] boolean AllUsers = FALSE);

 [static,Implemented] uint32 Admin([in] string PackageLocation,[in] string TargetLocation,[in] string Options);

 [static,Implemented] uint32 Advertise([in] string PackageLocation,[in] string Options,[in] boolean AllUsers = FALSE);

 [Implemented] uint32 Reinstall([in,valuemap{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"} : ToSubclass] uint16 ReinstallMode = 1);

 [Implemented] uint32 Upgrade([in] string PackageLocation,[in] string Options);

 [Implemented] uint32 Configure([in,valuemap{"1", "2", "3"} : ToSubclass] uint16 InstallState = 1,[in,valuemap{"1", "2", "3"} : ToSubclass] uint16 InstallLevel = 1);

 [Implemented] uint32 Uninstall();

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\sms")

[SMS_Report(TRUE),

SMS_Group_Name("Windows Installer-based Applications"),

SMS_Class_ID("MICROSOFT|MSIAPPS|1.0")]

class Win32_Product : SMS_Class_Template

{

[SMS_Report(TRUE), key]

string

IdentifyingNumber;

[SMS_Report(TRUE)]

string

Name;

[SMS_Report(TRUE)]

string

Version;

[SMS_Report(TRUE)]

string

Caption;

[SMS_Report(TRUE)]

string

Description;

[SMS_Report(True),SMS_Units("DateString")]

string

InstallDate;

[SMS_Report(TRUE)]

string

vendor;

};

//---

//-- --

//-- Norton AntiVirus Keys --

//-- This section will pull the Norton AntiVirus version info --

//-- --

//-- [DISABLED] due to McAfee. Both can be enabled if your --

//-- environment has McAfee and NAV in house. --

//-- --

//---

/*

////////

// Declare the class using the Property Provider, in the CIMV2 Namespace

////////

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("Nav_DAT_Data", NOFAIL)

[DYNPROPS]

class Nav_DAT_Data

{

[key] string
Component;

string

NavPath;

string

NavParent;

string

NavPatternName;

string

Nav5Defs;

string

Nav7Defs;

};

////////

// Declare the instance

////////

[DYNPROPS]

instance of Nav_DAT_Data

{

Component = "Norton AntiVirus Definition File Data";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Symantec\\InstalledApps|NAVNT"),

Dynamic, Provider("RegPropProv")] NavPath;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Intel\\LANDesk\\VirusProtect6\\CurrentVersion|Parent"),

Dynamic, Provider("RegPropProv")] NavParent;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Intel\\LANDesk\\VirusProtect6\\CurrentVersion|CurrentPatternName"),

Dynamic, Provider("RegPropProv")] NavPatternName;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Symantec\\SharedDefs|NAVNT_50_AP1"),

Dynamic, Provider("RegPropProv")] Nav5Defs;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Symantec\\SharedDefs|NAVCORP_70"),

Dynamic, Provider("RegPropProv")] Nav7Defs;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Norton AntiVirus Defintion Data"),

SMS_Class_ID("MICROSOFT|NAV_DEF_DATA|1.0")]

class Nav_DAT_Data : SMS_Class_Template

{

[SMS_Report(TRUE), key]

string NavPath;

[SMS_Report(TRUE)]

string NavParent;

[SMS_Report(TRUE)]

string NavPatternName;

[SMS_Report(TRUE)]

string Nav5Defs;

[SMS_Report(TRUE)]

string Nav7Defs;

};

*/

//---

//-- --

//-- Dell Specific Asset Information --

//-- USE ONLY IF INTERESTED IN DELL SPECIFIC DATA --

//-- --

//-- [DISABLED] by default. Can be enabled if you have DELL --

//-- systems and servers in house. --

//-- --

//---

/*

////////

// Because some of this DELL specific information is pulled from another namespace,

// a provider called a View Provider must be used.

// It is declared here:

////////

#pragma namespace("\\\\.\\Root\\CIMV2")

instance of __Win32Provider as $DataProv

{

Name = "MS_VIEW_INSTANCE_PROVIDER";

ClsId = "{AA70DDF4-E11C-11D1-ABB0-00C04FD9159E}";

ImpersonationLevel = 1;

PerUserInitialization = "True";

};

instance of __InstanceProviderRegistration

{

Provider = $DataProv;

SupportsPut = True;

SupportsGet = True;

SupportsDelete = True;

SupportsEnumeration = True;

QuerySupportLevels = {"WQL:UnarySelect"};

};

////////

// A specific DELL system class exists on DELL machines with the proper WMI information loaded.

// Therefore creating this reporting class will enable this DELL information to be reported

// to SMS.

////////

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Dell Summary"),

ResID(7000),ResDLL("dellwmi.dll"),

SMS_Class_ID("Dell|Summary|1.0")]

class Dell_System_Summary : SMS_Class_Template

{

[SMS_Report(TRUE), read: ToInstance ToSubClass]

string SystemVendor;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

string SystemDescription;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

string ProcessorType;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

sint32 MemorySize;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

sint32 ProcessorSpeed;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

string BIOSVersion;

[SMS_Report(TRUE), read: ToInstance ToSubClass]

datetime BIOSDate;

[SMS_Report(TRUE), read: ToInstance ToSubClass, key]

string ServiceTag;

[SMS_Report(TRUE), read: ToInstance ToSubClass, write: ToInstance ToSubClass]

string AssetTag;

};

////////

// Change to the CIMV2 namespace and use the View Provider to pull the Dell Chassis information.

////////

#pragma namespace ("\\\\.\\root\\cimv2")

[union, ViewSources{"Select * from DELL_Chassis"}, ViewSpaces{"\\\\.\\root\\CIMV2\\Dell"}, Dynamic : ToInstance, provider("MS_VIEW_INSTANCE_PROVIDER")]

class DELL_Chassis : CIM_ManagedSystemElement

{

[PropertySources("AmpStatus")] string AmpStatus;

[PropertySources("AssetTag")] string AssetTag;

[PropertySources("Caption")] string Caption;

[PropertySources("CreationClassName"), key] string CreationClassName;

[PropertySources("Description")] string Description;

[PropertySources("FanStatus")] string FanStatus;

[PropertySources("InstallDate")] datetime InstallDate;

[PropertySources("LogFormat")] uint16 LogFormat;

[PropertySources("MemStatus")] string MemStatus;

[PropertySources("Model")] string Model;

[PropertySources("Name")] string Name;

[PropertySources("ProcStatus")] string ProcStatus;

[PropertySources("PsStatus")] string PsStatus;

[PropertySources("SerialNumber")] string SerialNumber;

[PropertySources("Status")] string Status;

[PropertySources("SystemClass")] uint16 SystemClass;

[PropertySources("SystemID")] uint16 SystemID;

[PropertySources("Tag"), key] string Tag;

[PropertySources("TempStatus")] string TempStatus;

[PropertySources("VoltStatus")] string VoltStatus;

};

/////////

// Change to the CIMV2\SMS namespace to create the reporting class for the DELL Chassis information.

////////

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Dell Server Summary"),

SMS_Class_ID("Dell|ServerSummary|1.0")]

class DELL_Chassis : SMS_Class_Template

{

[SMS_Report(FALSE)]

string AmpStatus;

[SMS_Report(TRUE)]

string AssetTag;

[SMS_Report(FALSE),key]

string CreationClassName;

[SMS_Report(FALSE)]

string FanStatus;

[SMS_Report(FALSE)]

uint16 LogFormat;

[SMS_Report(FALSE)]

string MemStatus;

[SMS_Report(TRUE)]

string Model;

[SMS_Report(FALSE)]

string ProcStatus;

[SMS_Report(FALSE)]

string PsStatus;

[SMS_Report(TRUE)]

string SerialNumber;

[SMS_Report(FALSE)]

uint16 SystemClass;

[SMS_Report(TRUE)]

uint16 SystemID;

[SMS_Report(FALSE),key]

string Tag;

[SMS_Report(FALSE)]

string TempStatus;

[SMS_Report(FALSE)]

string VoltStatus;

};

*/

//---

//-- --

//-- End Of File --

//-- --
Appendix D - MOF Hotfix script

NOTE: Remember, the provider only needs to be registered in the MOF once.

#pragma namespace("\\\\.\\root\\cimv2")

instance of __Win32Provider as $Instprov

{

Name
="RegProv" ;

ClsID
= "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider
=$InstProv;

SupportsPut
=TRUE;

SupportsGet
=TRUE;

SupportsDelete
=FALSE;

SupportsEnumeration = TRUE;

};

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Windows

NT\\CurrentVersion\\Hotfix")

]

class HotFixes

{

[key]

string QNumber;

[PropertyContext("Installed")]

uint32 Installed;

};

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("Hotfixes"),

ResID(5900),ResDLL("SMS_RXPL.dll"),

SMS_Class_ID("MICROSOFT|HOTFIXES|1.0")]

class HotFixes : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string QNumber;

[SMS_Report(TRUE)]

uint32 Installed;

};

Appendix E - MOF Add/Remove Programs Script

NOTE: Remember, the provider only needs to be registered in the MOF once.

#pragma namespace("\\\\.\\root\\CIMV2")

// Register the Property provider to get Registry information

instance of __Win32Provider as $InstProv

{

Name = "RegProv" ;

ClsId = "{fe9af5c0-d3b6-11ce-a5b6-00aa00680c3f}" ;

};

instance of __InstanceProviderRegistration

{

Provider = $InstProv;

SupportsPut = TRUE;

SupportsGet = TRUE;

SupportsDelete = FALSE;

SupportsEnumeration = TRUE;

};

// Declare the class

#pragma namespace("\\\\.\\root\\cimv2")

[dynamic, provider("RegProv"),

ClassContext("local|HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows\\CurrentVersion\\Uninstall")

]

class AddRemovePrograms

{

[key]

string
ProdID;

[PropertyContext("ProdName")]

string ProdName;

[PropertyContext("Manufacturer")]

string Manufacturer;

[PropertyContext("ProdVersion")]

string ProdVersion;

};

#pragma namespace ("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("AddRemovePrograms"),

ResID(9100),ResDLL("SMS_RXPL.dll"),

SMS_Class_ID("ADDREMPROGS|")]

class AddRemovePrograms : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string ProdID;

[SMS_Report(TRUE)]

string ProdName;

[SMS_Report(TRUE)]

string Manufacturer;

[SMS_Report(TRUE)]

string ProdVersion;

};
Appendix F - MOF McAfee Dat File Script

NOTE: Remember, the provider only needs to be registered in the MOF once.

#pragma namespace("\\\\.\\root\\cimv2")

#pragma deleteclass("McAfee", NOFAIL)

[DYNPROPS]

class McAfee

{

[key] string
KeyName="";

string

szCurrentVersionNumber;

string

szDatVersion;

string

szEngineVer;

string

szDatDate;

};

////////

// Declare the instance, one for McAfee 4.5...

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee 4.5";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\VirusScan|szCurrentVersionNumber"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatVersion"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\Shared Components\\VirusScan Engine\\4.0.xx|szDatDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// one for McAfee 4.03 and older...

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Legacy";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\McAfee\\VirusScan|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// and one for McAfee 4.5 Server (NetShield)

////////

[DYNPROPS]

instance of McAfee

{

KeyName="McAfee Server (NetShield)";

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szProductVer"),

Dynamic, Provider("RegPropProv")] szCurrentVersionNumber;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefVer"),

Dynamic, Provider("RegPropProv")] szDatVersion;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szEngineVer"),

Dynamic, Provider("RegPropProv")] szEngineVer;

[PropertyContext("local|HKEY_LOCAL_MACHINE\\SOFTWARE\\Network Associates\\TVD\\NetShield NT\\CurrentVersion|szVirDefDate"),

Dynamic, Provider("RegPropProv")] szDatDate;

};

////////

// Change to the CIMV2\SMS Namespace and declare the Reporting Class

////////

#pragma namespace("\\\\.\\root\\cimv2\\SMS")

[SMS_Report(TRUE),

SMS_Group_Name("McAfee Virus Scan"),

SMS_Class_ID("MICROSOFT|McAfee|1.0")]

class McAfee : SMS_Class_Template

{

[SMS_Report(TRUE),key]

string

KeyName;

[SMS_Report(TRUE)]

string

szCurrentVersionNumber;

[SMS_Report(TRUE)]

string

szDatVersion;

[SMS_Report(TRUE)]

string

szEngineVer;

[SMS_Report(TRUE)]

string

szDatDate;

};
1. Default stuff as shipped by Microsoft. Just leave it alone (except for turning on and off classes and properties like normal, with the SMS_Report lines)

2. At the end of the file, add #pragma namespace(\\\\.\\root\cimv2) (to ensure everything from here on is going in the cimv2 namespace)

3. Define any providers needed - just cut and paste from examples or the WMI SDK documentation - no changes needed. Each provider is defined once.

4. Define Data classes - These are the ones where the actual data comes from. In the ARP example below (sic), it's the class with the PropertyContext lines. But there are lots of different ways to get data (depends on the provider or method used), so data classes will only have PropertyContext lines when the Instance Registry Provider is used.

5. #pragma namespace(\\\\.\\root\\simv2\\sms) (to ensure everything from here on is going in the cimv2\sms namespace)

6. Define Reporting Classes - these are the ones that tell the hardware inventory agent to go looking in the cimv2 namespace for Data Classes. The class names must be identical between the two namespaces. These are the classes with the SMS_Report lines.

� Scott Stephen - �HYPERLINK "http://www.myitforum.com/contrib/default.asp?nm=Scott%20Stephen&cid=18"�http://www.myitforum.com/contrib/default.asp?nm=Scott%20Stephen&cid=18�

2

